

https://xkcd.com/626/

With f(x) as in the graph, estimate:

If $f(x) = x^4 - 3x^3 + 4x$, (that's the function in the plot) then $f'(x) = 4x^3 - 9x^2 + 4$.

In particular, f'(1) = 4 - 9 + 4 = -1 and $f'(2) = 4 \cdot 8 - 9 \cdot 4 + 4 = 0$.

1 Rate of change

f'(a) is the

- slope of the tangent line approximating f(x) at x = a
- rate of change of f(x) at x = a

Recall. slope = $\frac{\text{rise}}{\text{run}} = \frac{\Delta y}{\Delta x}$ (i.e. $\frac{\text{change in } y}{\text{change in } x}$) This also explains why we write $\frac{dy}{dx} = f'(x)$ if y = f(x).

Example 1. Suppose your fresh cup of coffee is f(t) degrees (Fahrenheit) warm after t minutes.

(a) What is the meaning of f(5) = 175?

First off, the units for f(5) are degrees.

Meaning: After 5 minutes, your coffee is 175 degrees warm.

(b) What is the meaning of f'(5) = -2?

First off, the units for f'(5) are degrees/min.

Meaning: after 5 minutes (at that moment of time), your coffee is cooling down 2 degrees/minute.

[This is the rate at which the temperature changes.]

(c) Estimate the temperature after 6 minutes.

In other words, estimate f(6).

At t = 5, the temperature is f(5) = 175 degrees, and

it changes at a rate of f'(5) = -2 degrees/minute.

Hence, we estimate $f(6) \approx 175 - 2 = 173$ degrees.

Note. Mathematically, we have approximated f(t) with the tangent line at t = 5 (which has equation f(5) + f'(5)(t-5)).

(d) Estimate the temperature after 8 minutes.

As before, we now estimate $f(8) \approx 175 - 2 \cdot 3 = 169$.

This estimate is more risky since 8 is further away from 5.

Fancy thoughts. Should we expect f(8) < 169 or f(8) > 169?

The rate of change should decrease as the coffee approaches room temperature. Hence, we expect that f(8) > 169 and that f'(8) > -2.

Comment. We might discuss Newton's law of cooling when talking about exponential models.

Example 2. Let g(t) be the U.S. GDP in billions of dollars at time t in years since Jan 1, 2000.

(a) What is measured by g'(t)?

First off, the units for g'(t) are billion dollars/year.

g'(t) is the change in GDP in billion dollars/year at time t.

(b) When is g'(t) < 0?

An exact answer is hard to read off the graph.

However, g'(t) is mostly positive, with a notable exception around t = 9, when g'(t) < 0 (the 2009 recession).

Below is an approximation to g'(t).

(The data was available only quarterly. Also, we should consider the possibility that g(t) is not differentiable; for instance, stock prices jump so erratically that the graph does not admit tangent lines.)

Data from FRED (Federal Reserve Bank of St. Louis); retrieved Aug 2017 https://fred.stlouisfed.org/series/GDP

2 Marginal cost/revenue/profit

- If C(x) is the cost to produce x units, then
- C'(x) is the marginal cost (at production level x).

Marginal cost is measured in cost/unit.

It is the cost per (additional) unit at production level x.

Note that $C'(x) \approx \frac{C(x+1) - C(x)}{1}$.

The right-hand side is literally the cost to produce one more item. However, it is beneficial to also allow fractional units, in which case C'(x) is more appropriate.

Example 3. Suppose the cost (in dollars) of producing x units of a product is given by $C(x) = \operatorname{secret}(x)$ dollars.

(a) What is the cost of producing 50 units?

C(50) dollars

(b) What is the marginal cost when the production level is 50 units?

C'(50) dollars/unit

(c) At what level of production, is the marginal cost 100 dollars/unit?

Need to solve C'(x) = 100.

Each such x is a level of production when the marginal cost is 100 dollars/unit. (There could be several such levels x of production.)

(d) How many units can we produce with 1000 dollars?

Need to solve C(x) = 1000.

Then, x is the number of units can we produce with 1000 dollars.

Profit is revenue minus cost: P(x) = R(x) - C(x).

As before, x is the production level.

Marginal revenue and marginal profit are likewise defined:

• Marginal revenue is R'(x).

This is the (extra) revenue for an additional unit (at production level x).

• Marginal profit is P'(x).

This is the (extra) profit for an additional unit (at production level x).

3 Next stop: pies!

Angela: So, wait, when pies are involved, you can suddenly do math in your head? Oscar: Hold on, Kevin, how much is 19,154 pies divided by 61 pies? Kevin: 314 pies. Oscar: What if it were salads? Kevin: Well, it's the...carry the four...and...it doesn't work. The Office (Season 9, Episode 4): http://www.simplethingcalledlife.com/stcl/when-pies-are-involved/

Any comments on Kevin's answer?

Example 4. Suppose s(t) is the height in miles after t^{2500} minutes of a rocket that is shot up vertically.

(a) What is the meaning of s(5) = 1375?

First off, units: s(5) is miles.

After 5 minutes, the rocket is 1375 miles high.

- (b) What is the meaning of s'(5) = 220?
- First off, units: s'(5) is miles/min.
- After 5 minutes, the rocket has a speed of 220 miles/min (13200 miles/h).

(c) What is the meaning of s''(5) = -22?

First off, units: s''(5) is (miles/min)/min, or miles/min².

After 5 minutes, the rocket has an acceleration of -22 miles/min^2 .

Physics comment. Earth's gravitation is about 22 miles/min² (or 32.2 ft/sec²).

In other words, our rocket is ballistic (only initially powered, then in free fall).

(d) When is the altitude of the rocket 2000 miles?

To find such a time t, we need to solve s(t) = 2000.

[The picture suggests $t \approx 8.5$ and $t \approx 21.5$.]

(e) When does the rocket land again?

To find that time, we need to solve $s(t)\,{=}\,0.$

One solution is $t\,{=}\,0$ but we are looking for the other one.

[The picture suggests t = 30.]

(f) What is the maximal height the rocket reaches?

To find the time t of maximal height, we need to solve $s'(t)\,{=}\,0.$

[The picture suggests $t\,{=}\,15$ and a maximal height of $s(15)\,{\approx}\,2500$ miles.]

Just for fun. These numbers are all made up. However, they are (in some aspects) not too far off from the 2017/7/28 launch of a North Korea missile. That missile reached a height of about 2315 miles and landed after 47 minutes.

https://en.wikipedia.org/wiki/Hwasong-14

For comparison, the ISS is 205-270 miles above earth, the moon 238,900 miles.

Example 5. Solve the last three parts of the previous problem if $s(t) = 330t - 11t^2$.

(a) When is the altitude of the rocket 2000 miles?

To find such a time t, we need to solve s(t) = 2000. $330t - 11t^2 = 2000$, that is, $-11t^2 + 330t - 2000 = 0$ has the two solutions $t = \frac{-330 \pm \sqrt{330^2 - 4(-11)(-2000)}}{-22} = 8.429, 21.571$.

(b) When does the rocket land again?

To find that time, we need to solve s(t) = 0. $330t - 11t^2 = 0$ has the solutions t = 0 and $t = \frac{330}{11} = 30$. =t(330-11t)

As suggested by the graph, the rocket lands at t = 30.

(c) What is the maximal height the rocket reaches?

To find the time t of maximal height, we need to solve s'(t) = 0. s'(t) = 330 - 22t = 0 has the solution $t = \frac{330}{22} = 15$.

Thus, the maximal height is s(15) = 2475 miles.

Assignments.

- finish "1.7. More on derivatives" (8 questions)
- check out Section 1.8 in the book
- do "1.8. Rate of change" (4 questions)
- take "chapter 1 quiz" (10 questions)

4 Our second quiz

Keep in mind that you can take each quiz a second time if you are unhappy with your first score.

The second quiz has 10 questions, covering the following:

- given slope and point of line, complete point-slope equation
- estimate slope of tangent line from picture
- power rule (2x)
- derivative of polynomial (2x)
- first and second derivative
- evaluate a derivative at some value, like $\frac{d}{dx}(5x-2)^{10}\Big|_{x=2}$
- rate of change text problem
- velocity, acceleration