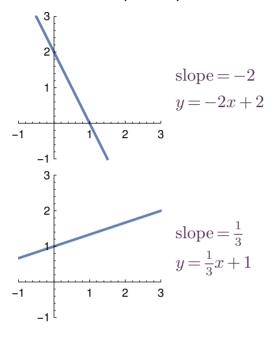
Check out the dancing ghosts again!

Cute as they are...a few of them need to seriously work on their moves:

- -2^x dances as if he was 2^{-x}
- $-\sqrt{x}$ dances as if he was $\sqrt{-x}$
- x = 0 dances as if he was y = 0

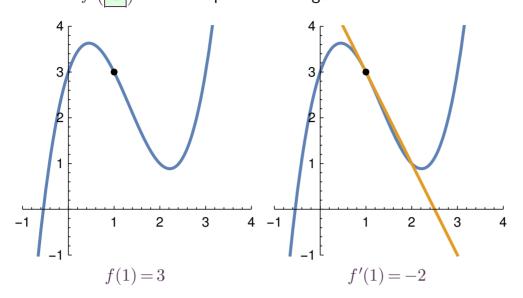
Estimate the slopes! Equations?



by chibipandora @ deviantART

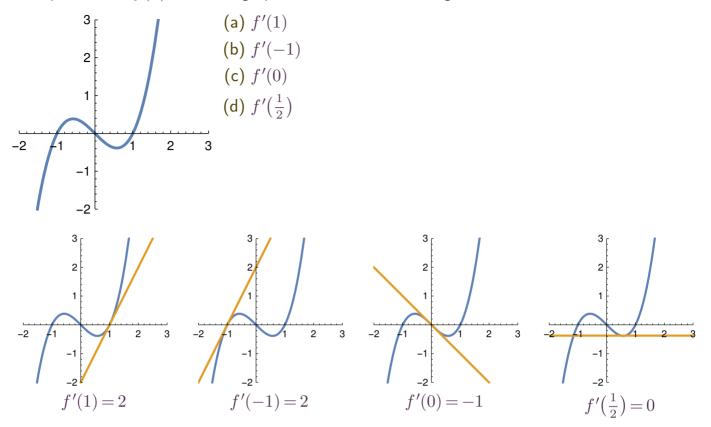
1 The derivative

At, say, x = 1 there is a **tangent line** approximating f(x). We write f'(1) for the slope of this tangent line.



f'(x) is called the derivative of $f(x)$.	
Another common notation: $\frac{d}{dx}f(x) = f'(x)$	

Example 1. For f(x) as in the graph, estimate the following:



Example 2. Find an equation for the tangent line at x = 1.

Solution. Line has slope f'(1) = 2 and goes through (1, 0). Hence, an equation is y - 0 = 2(x - 1). [Optionally, this simplies to y = 2x - 2, the slope-intercept form.]

1.1 Computing derivatives—a trivial case

(obvious) If f(x) = mx + b, then f'(x) = m.

Why? This is a line. At every point, it has slope m.

Example 3. If $f(x) = -\pi^3$, then f'(x) = 0.

In that case, f(x) is a horizontal line (i.e. with slope 0). [Just to make sure: $-\pi^3 \approx -31.006$ is a constant.]

2 The power rule

(power rule) If $f(x) = x^r$, then $f'(x) = rx^{r-1}$.

Example 4. What is f'(x) in each case?

- (a) $f(x) = x^2$ $f'(x) = 2x^1 = 2x$
- (b) $f(x) = x^4$ $f'(x) = 4x^3$
- (c) $f(x) = 2^6$ f'(x) = 0 (see Example 3; here, f(x) = 64)
- (d) $f(x) = \sqrt{x} = x^{1/2}$ $f'(x) = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$
- (e) $f(x) = \frac{1}{x^2} = x^{-2}$ $f'(x) = -2x^{-3} = -\frac{2}{x^3}$

Example 5. Find an equation for the tangent line to the graph of $f(x) = \frac{1}{x^2}$ at the point $(3, \frac{1}{9})$.

Solution. Since $f'(x) = -\frac{2}{x^3}$, the slope is $f'(3) = -\frac{2}{3^3} = -\frac{2}{27}$. Line goes through $\left(3, \frac{1}{9}\right)$. Hence, an equation is $y - \frac{1}{9} = -\frac{2}{27}(x - 3)$. Optionally, this simplifies to $y = -\frac{2}{27}x + \frac{1}{3}$ (slope-intercept form). [MyLabsPlus should accept any form.]

Play time! Plot f(x) and tangent line using GeoGebra.

https://www.geogebra.org/graphing

Does the tangent line indeed touch the graph of f(x) at the point $\left(3, \frac{1}{9}\right)$?

Homework. Determine the tangent line at x = -1.

Again, plot both f(x) and the tangent line in GeoGebra. (The final answer in slope-intercept form is y = 2x + 3.)

3 Some rules for differentiation

Go through Section 1.6 in the book.

Example 6. Let $f(x) = -2x^4$. What is f'(x)?

Solution. The derivative of x^4 is $4x^3$. For us, y is scaled by -2 (a constant!). The slopes are scaled likewise. Hence, $f'(x) = -2 \cdot 4x^3 = -8x^3$.

Example 7. Let $f(x) = -2x^4 + 3x^5$. What is f'(x)?

Solution. The derivative of $-2x^4$ is $-8x^3$. The derivative of $3x^5$ is $15x^4$. Hence, $f'(x) = -8x^3 + 15x^4$.

Play time! Do the previous example in GeoGebra using:

 $f(x) = -2x^4 + 3x^5$ (then press ENTER) f'(x)

https://www.geogebra.org/graphing

(generalized power rule) If $f(x) = g(x)^r$, then $f'(x) = rg(x)^{r-1} \cdot g'(x)$.

Example 8. If $f(x) = (3x^2 - 1)^2$, what is f'(x)?

Solution. (by expanding) $f(x) = 9x^4 - 6x^2 + 1$, so that $f'(x) = 36x^3 - 12x$.

Solution. (using generalized power rule)

 $f(x) = g(x)^2$ with $g(x) = 3x^2 - 1$. First, g'(x) = 6x. Hence, $f'(x) = 2g(x) \cdot g'(x) = 2(3x^2 - 1) \cdot 6x$. [Optionally, we expand $2(3x^2 - 1) \cdot 6x = 36x^3 - 12x$, as before.] **Example 9.** What is f'(x) in each case?

(a)
$$f(x) = (2x+3)^{10}$$
 [Here, $g(x) = 2x+3$.]
 $f'(x) = 10(2x+3)^9 \cdot 2 = 20(2x+3)^9$
(b) $f(x) = \frac{1}{x^2+1} = (x^2+1)^{-1}$ [Here, $g(x) = x^2+1$.]
 $f'(x) = -(x^2+1)^{-2} \cdot 2x = -\frac{2x}{(x^2+1)^2}$

4 Higher derivatives

The derivative of the derivative is the second derivative.

It is denoted f''(x) or $\frac{\mathrm{d}^2}{\mathrm{d}x^2}f(x)$. Or, $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$.

Similarly, but less important, there is a third derivative and so on...

Example 10. Let $y = -2x^4 + 3x$. Find the first and second derivatives.

(a) $\frac{dy}{dx} = -8x^3 + 3$ (b) $\frac{d^2y}{dx^2} = -24x^2$

Example 11. Determine: $\frac{d^2}{dx^2}(2x^3 - x + 1)\Big|_{x=5}$

This is the same as setting $f(x) = 2x^3 - x + 1$ and asking for f''(5).

Solution.

 $\begin{aligned} & \left. \frac{\mathrm{d}}{\mathrm{d}x} (2x^3 - x + 1) = 6x^2 - 1 \\ & \left. \frac{\mathrm{d}^2}{\mathrm{d}x^2} (2x^3 - x + 1) = 12x \\ & \left. \frac{\mathrm{d}^2}{\mathrm{d}x^2} (2x^3 - x + 1) \right|_{x=5} = 12 \cdot 5 = 60 \end{aligned}$

Homework. Do this computation in GeoGebra. First, write $f(x)=2x^3-x+1$, then f''(5).

Assignments.

- do "1.3. The derivative" (10 questions)
- check out Section 1.3 in the book (Book available in MyLabsPlus under "eText".)
- take the quiz "1.2, 1.3. Power rule quiz" (4 questions)
- check out Section 1.6 in the book
- do "1.6. Rules for derivatives" (6 questions)
- begin "1.7. More on derivatives" (first 6 of 8 questions)

5 Taking your first quiz

Your first quiz consists of 4 questions, much like the following:

- If $f(x) = x^5$, then f'(x) =
- If $f(x) = 2^6$, then f'(x) =
- $\frac{\mathrm{d}}{\mathrm{d}x}(x^{11}) =$
- Find the slope of the tangent line to the graph of $y = x^3$ at the point where x = -2/7. The slope is _____.

Final answers. $5x^4$, 0, $11x^{10}$, $\frac{12}{49}$