Please print your name:

No notes, calculators or tools of any kind are permitted.

There are 22 points in total.

## Good luck!

The actual in-class exam will be similar but shorter (with more space for answers).

**Problem 1. (2 points)** Given  $f(x) = 2x^4 - 3\sqrt{x} + 7x - 4^2$ , compute f'(x).

**Solution.**  $f'(x) = 8x^3 - \frac{3}{2}x^{-1/2} + 7$ 

**Problem 2.** (2 points) Consider the graph of  $y = 1 + \sqrt{x}$ . Determine the tangent line at x = 4.

**Solution.** Since  $\frac{dy}{dx} = \frac{1}{2}x^{-1/2}$ , the slope is  $\frac{dy}{dx}\Big|_{x=4} = \frac{1}{2} \cdot 4^{-1/2} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$ .

If x = 4 then  $y = 1 + \sqrt{4} = 3$ , so the tangent line passes through the point (4,3).

Therefore, the tangent line is  $y-3 = \frac{1}{4}(x-4)$ .

[Optionally, in slope-intercept form, this is  $y = \frac{1}{4}x + 2$ .]

**Problem 3. (2 points)** Consider the function  $f(x) = 2x^3 + 5x$ .

- (a) Is f(x) increasing/decreasing at x = -1?
- (b) Is f(x) concave up/down at x = -1?

## Solution.

(a)  $f'(x) = 6x^2 + 5$ 

f'(-1) = 11 > 0

Hence, f(x) is increasing at x = -1.

(b) f''(x) = 12x f'(-1) = -12 < 0Hence, f(x) is concave down at x = -1.

**Problem 4.** (3 points) The first and second derivatives of the function f(x) have the following values:

|        | x < -2 | x = -2 | -2 < x < -1 | x = -1 | -1 < x < 0 | x = 0 | 0 < x < 1 | x = 1 | 1 < x < 3 | x = 3 | x > 3 |
|--------|--------|--------|-------------|--------|------------|-------|-----------|-------|-----------|-------|-------|
| f'(x)  | _      | 0      | +           | +      | +          | 0     | +         | +     | +         | 0     | _     |
| f''(x) | +      | +      | +           | 0      | —          | 0     | +         | 0     | —         | 0     | _     |

Determine the location of all local minima, local maxima and inflection points.

**Solution.** In summary, we have a local min at x = -2, a local max at x = 3, and inflection points at x = -1, x = 0, x = 1.

The reasoning is as follows:

Local extrema can only occur when f'(x) = 0. Hence, the candidates are x = -2, x = 0 and x = 3. If f' is changing from + to -, then we have a local max. Likewise, if f' is changing from - to +, then we have a local min.

• At x = -2: since f' is changing from - to +, there is a local min at x = -2.

(Alternatively, we could have noticed that f''(-2) > 0, which implies that this is a local min.)

• At x = 0: since the sign of f' is not changing, we do not have a local extremum at x = 0.

(Since f''(0) = 0, the second-derivative test would not help us decide whether this is a local extremum or not.)

• At x = 3: since f' is changing from + to -, there is a local max at x = 3.

(Since f''(0) = 0, the second-derivative test would not help us decide whether this is a local extremum or not.)

Inflection points can only occur when f''(x) = 0. Hence, the candidates are x = -1, x = 0, x = 1 and x = 3. Recall that f(x) has an inflection point at x = a if f'' is changing sign at x = a (i.e. concavity is changing).

- At x = -1: since f'' is changing from + to -, there is an inflection point at x = -1.
- At x = 0: since f'' is changing from to +, there is an inflection point at x = 0.
- At x = 1: since f'' is changing from + to -, there is an inflection point at x = 1.
- At x=3: since the sign of f'' is not changing (f is concave down before and after), we do not have an inflection point at x=3.

Problem 5. (3 points) Use the graph below to fill in each entry of the grid with positive, negative or zero.



|        | f(x) | f'(x) | f''(x) |
|--------|------|-------|--------|
| x = -1 | +    | +     | _      |
| x = 2  | _    | _     | +      |
| x = 3  | _    | +     | +      |

**Problem 6.** (2 points) A classmate needs to find the local extrema of the function  $f(x) = x^4 - \frac{4}{3}x^3 - 4x^2 + 24x + 1$ . She already found that the critical points are at x = -1, x = 0 and x = 2. Help her conclude what the local extrema are.

Solution. We will use the second-derivative test.

 $\begin{aligned} f'(x) &= 4x^3 - 4x^2 - 8x + 24 \\ f''(x) &= 12x^2 - 8x - 8 \\ \text{Since } f''(-1) &= 12 + 8 - 8 = 12 > 0, \ f(x) \text{ has a local min at } x = -1. \\ \text{Since } f''(0) &= -8 < 0, \ f(x) \text{ has a local max at } x = 0. \\ \text{Since } f''(2) &= 48 - 16 - 8 = 24 > 0, \ f(x) \text{ has a local min at } x = 2. \end{aligned}$ 

Alternative. Since we have a complete list of critical points (i.e. there is no other x for which f'(x) = 0), we can also use the first-derivative test. However, since the second derivative is so easy to compute, the second-derivative test should be our first choice.

**Problem 7.** (2 points) Let T(x) be the time in hours it takes to produce x units.



**Problem 8. (3 points)** A small rectangular garden of area 80 square meters is to be surrounded on three sides by a brick wall costing 5 dollars per meter and on one side by a fence costing 3 dollars per meter. Find the dimensions of the garden such that the cost of the fence is minimized.

Solution. Let a be the length in meters of the side with a fence, and b the length of the other side.

Then, the cost for the fence is C = (5+3)a + (5+5)b = 8a + 10b. (This is the objective function.)

On the other hand, we have ab = 80. (This is a constraint equation.)

In order to minimize the cost, we express cost as a function of a. Since  $b = \frac{80}{a}$  (because ab = 80), we get that the cost is  $C(a) = 8a + 10 \cdot \frac{80}{a} = 8a + 800a^{-1}$ .

$$C'(a) = 8 + 800 \cdot (-a^{-2}) = 8 - 800a^{-2}.$$

We now solve C'(a) = 0 to find the critical values:  $8 - 800a^{-2} = 0$  simplifies to  $a^2 - 100 = 0$  (divide both sides by 8 and multiply with  $a^2$ ), that is,  $a^2 = 100$ . Therefore,  $a = \sqrt{100} = 10$  (the other solution is a = -10 but a negative length does not make sense here).

Now, we could use the first or second-derivative test to determine that a = 10 is a local minimum. Since there are no other critical points, it then follows that a = 10 is in fact the absolute minimum. Alternatively, observe that for small a (close to 0) and large a, the cost is definitely not optimal (actually the cost becomes arbitrarily large); hence, the absolute minimum must be somewhere in between, and the only candidate is a = 10 (this observation makes the first or second-derivative test unnecessary). As a third alternative, make a quick sketch of C(a).

If 
$$a = 10$$
, then  $b = \frac{80}{a} = 8$ .

In conclusion, to minimize costs, the length of the side with a fence should be 10 meters and the length of the other side should be 8 meters.

**Comment.** We could also have expressed the cost as a function of *b*. Then  $C(b) = 8 \cdot \frac{80}{b} + 10b = 640b^{-1} + 10b$  and  $C'(b) = -640b^{-2} + 10$ , so that C'(b) = 0 simplifies to  $b^2 = 64$ . We would conclude that b = 8 and then determine  $a = \frac{80}{b} = 10$ , ending up (of course!) with the same dimensions as before.

**Problem 9.** (3 points) Given the cost function  $C(x) = \frac{1}{2}x^3 - 15x^2 + 200x + 4$ , find the minimal marginal cost.

**Solution.** The marginal cost function is  $M(x) = C'(x) = \frac{3}{2}x^2 - 30x + 200$ .

We need to find the minimum of M(x).

M'(x) = 3x - 30

Solving M'(x) = 0, that is, 3x - 30 = 0, we find x = 10.

Since M''(10) = 3 > 0, this is a local minimum. Since there is no other critical points, this must be the absolute minimum.

The minimal marginal cost is  $M(10) = \frac{3}{2} \cdot 100 - 300 + 200 = 50.$