Please print your name:

Besides the allowed calculator, no notes or tools of any kind are permitted.

There are 25 points in total.

Good luck!

Problem 1. (6 points) Determine the following limits (or state that they don't exist). [No need to show work here.]

(a)
$$\lim_{x \to 0} \frac{\sin(3x)}{7x} =$$

(b)
$$\lim_{x \to \infty} \frac{\sin(3x)}{7x} =$$

(c)
$$\lim_{x \to 1} \frac{\sin(3x)}{7x} =$$

(d)
$$\lim_{x \to \infty} \frac{\sqrt{x} + 7x^2 - 2}{3x^2 + 5} =$$

(e) If
$$\lim_{x \to a} f(x) = 3$$
 and $\lim_{x \to a} g(x) = 5$, then $\lim_{x \to a} \left[f(x)^2 - 3g(x) \right] = 6$.

(f) If
$$\lim_{x \to 1} f(x) = 2$$
, $\lim_{x \to 1} g(x) = 3$ and $\lim_{x \to 2} g(x) = 4$, then $\lim_{x \to 1} g(f(x)) = 6$.

Problem 2. (2 points) Simplify!
$$e^{2\ln(x)-\ln(3y)} =$$

Problem 3. (2 points) Let f(x) be a complicated continuous function taking the following values:

	\boldsymbol{x}	-3	-2	-1	0	1	2	3
f(x)	2	3	1	-1	-3	4	4

How many solutions to the equation f(x) = 3 can we guarantee?

Problem 4. (3 points) Let f(x) be the function graphed below. Fill in the blanks.

- (a) f(x) is continuous everywhere except at the following values of x:
- (b) f(x) has a removable discontinuity at the following values of x:
- (c) $\lim_{x \to 2^+} f(x) =$

Problem 5. (4 points) For what values of a is $f(x) = \begin{cases} x^2 - a, & x < 1, \\ a \ln(x) + 2, & x \ge 1, \end{cases}$ continuous at every x? [Show work!]

Problem 6. (4 points) Determine	ne $\lim_{x \to \infty} \left(x - \sqrt{x^2 + 7x} \right)$.	[Show work!]
Problem 7. (4 points) Determine	ne $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ for $f(x) = x^2 + 1$.	[Show work!]
Problem 7. (4 points) Determine	ne $\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$ for $f(x) = x^2 + 1$.	[Show work!
Problem 7. (4 points) Determine	ne $\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$ for $f(x) = x^2 + 1$.	[Show work!
Problem 7. (4 points) Determine	ne $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ for $f(x) = x^2 + 1$.	[Show work!

(extra scratch paper)