Example 122. Evaluate $\sum_{k=2}^{5} 2^{-k}$.

Solution.
$$\sum_{k=2}^{5} 2^{-k} = \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} = \frac{8+4+2+1}{32} = \frac{15}{32}$$

Example 123. Write $\frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11}$ using sigma notation.

Solution.
$$\frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} = \sum_{k=1}^{5} \frac{1}{2k+1}$$
 or, for instance, $\sum_{k=2}^{6} \frac{1}{2k-1}$ or $\sum_{k=0}^{4} \frac{1}{2k+3}$

Example 124. Write the following sums using sigma notation.

(a)
$$f(0) + f(\frac{1}{4}) + f(\frac{1}{2}) + f(\frac{3}{4}) + f(1) + f(\frac{5}{4}) + f(\frac{3}{2}) + f(\frac{7}{4})$$

(b)
$$f(\frac{1}{4}) + f(\frac{1}{2}) + f(\frac{3}{4}) + f(1) + f(\frac{5}{4}) + f(\frac{3}{2}) + f(\frac{7}{4}) + f(2)$$

(c)
$$f(\frac{1}{8}) + f(\frac{3}{8}) + f(\frac{5}{8}) + f(\frac{7}{8}) + f(\frac{9}{8}) + f(\frac{11}{8}) + f(\frac{13}{8}) + f(\frac{15}{8})$$

Solution.

(a)
$$\sum_{k=0}^{7} f\left(\frac{k}{4}\right)$$

Important note. $\frac{1}{4} \Big[f(0) + f\Big(\frac{1}{4}\Big) + f\Big(\frac{1}{2}\Big) + f\Big(\frac{3}{4}\Big) + f(1) + f\Big(\frac{5}{4}\Big) + f\Big(\frac{3}{2}\Big) + f\Big(\frac{7}{4}\Big) \Big]$ is the Riemann sum for the area between the x-axis and f(x) for x in [0,2] using 8 intervals (of width $\frac{1}{4}$) and left endpoints.

(b)
$$\sum_{k=1}^{8} f\left(\frac{k}{4}\right)$$

Important note. $\frac{1}{4}$ times this is the Riemann sum for the area between the x-axis and f(x) for x in [0,2] using 8 intervals (of width $\frac{1}{4}$) and right endpoints.

(c)
$$\sum_{k=0}^{7} f\left(\frac{2k+1}{8}\right)$$
 or $\sum_{k=1}^{8} f\left(\frac{2k-1}{8}\right)$

Important note. $\frac{1}{4}$ times this is the Riemann sum for the area between the x-axis and f(x) for x in [0,2] using 8 intervals (of width $\frac{1}{4}$) and midpoints.

Example 125. Let A be the area between the x-axis and f(x) for x in [1,3].

- (a) Write a Riemann sum for A using n intervals (of equal size) and midpoints.
- (b) Evaluate the Riemann sum for $f(x) = \frac{1}{x}$ and n = 3.

Solution.

- (a) Each interval has length $\frac{3-1}{n}=\frac{2}{n}$, so that the midpoints are $\frac{2}{n}$ apart. The first interval is $\left[1,1+\frac{2}{n}\right]$ and has midpoint $1+\frac{1}{n}$. Hence the k-th interval has midpoint $1+\frac{1}{n}+(k-1)\frac{2}{n}=1+\frac{2k-1}{n}$. Hence, the requested Riemann sum is $\sum_{k=1}^{n}\frac{2}{n}f\bigg(1+\frac{2k-1}{n}\bigg)$.
- (b) $\sum_{k=1}^{3} \frac{2}{3} f \left(1 + \frac{2k-1}{3} \right) = \frac{2}{3} \left(f \left(\frac{4}{3} \right) + f \left(\frac{6}{3} \right) + f \left(\frac{8}{3} \right) \right) = \frac{2}{3} \left(\frac{3}{4} + \frac{3}{6} + \frac{3}{8} \right) = \frac{13}{12} \approx 1.0833$ Comment. The true area is $A = \ln(3) \approx 1.0986$.

(Averages)

The average value of f(x) for x in [a,b] is $\frac{1}{b-a}A$, where A is the area between the x-axis and f(x) for x in [a,b].

Soon. average of f on $[a,b] = \frac{1}{b-a} \int_a^b f(x) dx$

Example 126. Estimate the average value of $f(x) = \frac{1}{x}$ on [1,3] using a Riemann sum with 3 intervals and midpoints.

Solution. The average is $\frac{1}{3-1}A = \frac{1}{2}A$, where A is the area between the x-axis and $f(x) = \frac{1}{x}$ for x in [1,3]. In the previous example, we estimated using a Riemann sum with 3 intervals and midpoints that $A \approx \frac{13}{12}$. Hence, our estimate for the average is $\frac{1}{2}\frac{13}{12} = \frac{13}{24} \approx 0.5417$.

Comment. The maximum of $f(x) = \frac{1}{x}$ on [1, 3] is $\frac{1}{1} = 1$ and the minimum is $\frac{1}{3}$. The average had to be somewhere inbetween.

Comment. Note that $\frac{1}{2}$ times the Riemann sum is $\frac{1}{3}\left(f\left(\frac{4}{3}\right)+f\left(\frac{6}{3}\right)+f\left(\frac{8}{3}\right)\right)$, which we recognize as precisely the average of three of the function values.