Example 81.

- The area of a circle of radius r is $A = \pi r^2$. The circumference of that circle is $2\pi r$.
- The volume of a sphere of radius r is $V = \frac{4}{3}\pi r^3$. The surface area of that sphere is $4\pi r^2$.

Note that the circumference is $\frac{dA}{dr}$ and that the surface area is $\frac{dV}{dr}$. Can you say why? See: https://www.math.hmc.edu/funfacts/ffiles/20004.2-3.shtml

Linearization

The **linearization** of f(x) at x = a is the tangent line

$$L(x) = f(a) + f'(a)(x - a).$$

It serves as an approximation ("standard linear approximation") of f near a.

Example 82. Find the linearization of $f(x) = x^3(2x+1)^{10}$ at x = -1. Solution. $f'(x) = 3x^2(2x+1)^{10} + x^3 \cdot 10(2x+1)^9 \cdot 2 = 3x^2(2x+1)^{10} + 20x^3(2x+1)^9$ and f'(-1) = 23. Since f(-1) = -1, the linearization therefore is L(x) = -1 + 23(x+1).

Example 83. Find a linearization of $f(x) = \ln(x)$ at a suitable integer x near 1.01 and use that to estimate f(1.01) without a calculator.

Solution. The only suitable point near 1.01 is 1. Using $f'(x) = \frac{1}{x}$, we have $f(1) = \ln(1) = 0$ and f'(1) = 1. Hence L(x) = 0 + 1(x - 1) = x - 1 is the linear approximation of f(x) at x = 1. Using that, we estimate $f(1.01) \approx L(1.01) = 0.01$.

For comparison. The exact value is $f(1.01) = \ln(1.01) = 0.00995033...$

Make a rough sketch. Since the tangent line at x = 1 lies above the graph of f(x), we know that our approximation is an overestimate.

Comment. Techniques like this are indeed used by calculators to evaluate transcendental functions.

Example 84. Approximate $e^{-0.0015}$ using an appropriate linear approximation.

Solution. We use the linearization of $f(x) = e^x$ at x = 0. Since f(0) = 1 and f'(0) = 1, the linearization is L(x) = 1 + 1(x - 0) = x + 1.

Using that, we estimate $e^{-0.0015} = f(-0.0015) \approx L(-0.0015) = 1 - 0.0015 = 0.9985$.

For comparison. From a sketch, we know that our estimate is an underestimate (because the tangent line is below the graph). The exact value is $e^{-0.0015} = 0.998501...$