Derivatives

Review.

- The slope of a line through (x_0, y_0) and (x_1, y_1) is $m = \frac{\text{rise}}{\text{run}} = \frac{y_1 y_0}{x_1 x_0}$.
- The line through (x_0, y_0) with slope m has the equation $y y_0 = m(x x_0)$. [Note how this equation is just $m = \frac{x - x_0}{y - y_0}$.]

Definition 46. The **derivative** of y = f(x) is

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Important comments.

- If the limit defining $f'(x_0)$ exists, then we say that f(x) is differentiable at $x = x_0$.
- Other common notations include: $f'(x) = \frac{d}{dx}f(x) = \frac{dy}{dx} = \dot{y} = f_x = Df(x) = D_x f(x)$
- $\frac{f(x+h) f(x)}{h}$ is the slope through (x, f(x)) and (x+h, f(x+h)), two points on the curve y = f(x). The corresponding line is called a secant line. As $h \to 0$, the two points merge into one.

The value $f'(x_0)$ is

- the slope of (the line tangent to) the curve y = f(x) at $x = x_0$,
- the rate of change of f(x) at $x = x_0$.

Example 47. If f(x) describes the distance in mi travelled by an object after time x in h. What is measured by f'(x) and what are the units?

Solution. The units of f'(x) are $\frac{\text{mi}}{h}$. (Why?!) This is the velocity of the object.

Example 48. (as in midterm!)

- (a) Compute f'(x) for $f(x) = x^2 + 1$.
- (b) Determine the line tangent to the graph of f(x) at x = 3.

Solution.

(a) We need to determine
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 for $f(x) = x^2 + 1$.
Since $f(x+h) = (x+h)^2 + 1 = x^2 + 2hx + h^2 + 1$, we have

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x^2 + 2hx + h^2 + 1) - (x^2 + 1)}{h} = \lim_{h \to 0} \frac{2hx + h^2}{h} = \lim_{h \to 0} (2x+h) = 2x.$$

(b) From the first part, the slope of that line is f'(3) = 6. It also passes through (3, f(3)) = (3, 10). Hence, it has the equation y - 10 = 6(x - 3), which simplifies to y = 6x - 8.

Armin Straub straub@southalabama.edu