- f(x) has y=a as a horizontal asymptote if $\lim_{x\to\infty} f(x)=a$ or if $\lim_{x\to-\infty} f(x)=a$.
- f(x) has x = a as a vertical asymptote if $\lim_{x \to a^-} f(x) = \pm \infty$ or if $\lim_{x \to a^+} f(x) = \pm \infty$.

Example 39. Determine $\lim_{x\to\infty} \frac{2\sqrt{x} - 3x^2 + 1}{5x^2 + 4}$.

Solution. $\lim_{x\to\infty} \frac{2\sqrt{x}-3x^2+1}{5x^2+4} = -\frac{3}{5}$ (fill in the details!)

Comment. Hence, $f(x) = \frac{2\sqrt{x} - 3x^2 + 1}{5x^2 + 4}$ has the line $y = -\frac{3}{5}$ as a horizontal asymptote.

Example 40. Determine $\lim_{x\to\infty} \sqrt[3]{\frac{2\sqrt{x}-3x^2+1}{5x^2+4}}$.

Solution. $\lim_{x \to \infty} \sqrt[3]{\frac{2\sqrt{x} - 3x^2 + 1}{5x^2 + 4}} = \sqrt[3]{-\frac{3}{5}} = -\sqrt[3]{\frac{3}{5}}$

Here, we used that $\lim_{x\to c} \sqrt[3]{f(x)} = \sqrt[3]{L}$ with $L = \lim_{x\to c} f(x)$, which holds because $\sqrt[3]{x}$ is continuous at x = L (in fact, it is continuous everywhere).

Example 41. Determine $\lim \frac{x^2+2x-3}{x^2-1}$ as $x \to 1^{\pm}$ and as $x \to -1^{\pm}$.

Solution. First, let us note that $\frac{x^2 + 2x - 3}{x^2 - 1} = \frac{(x - 1)(x + 3)}{(x - 1)(x + 1)} = \frac{x + 3}{x + 1}$.

Hence, $\lim_{x \to 1} \frac{x^2 + 2x - 3}{x^2 - 1} = \lim_{x \to 1} \frac{x + 3}{x + 1} = 2.$

On the other hand, $\lim_{x\to -1^+} \frac{x^2+2x-3}{x^2-1} = \lim_{x\to -1^+} \frac{x+3}{x+1} = \frac{2}{0^+} = +\infty.$

Likewise, $\lim_{x \to -1^-} \frac{x^2 + 2x - 3}{x^2 - 1} = \lim_{x \to -1^-} \frac{x + 3}{x + 1} = \frac{2}{0^-} = -\infty.$

Comment. Hence, $f(x) = \frac{x^2 + 2x - 3}{x^2 - 1}$ has a vertical asymptote at x = -1.

Example 42. Determine $\lim_{x\to\infty} \left(2x^3 - x\sqrt{4x^4 + 3x}\right)$

 $\textbf{Solution. Note that } 2x^3 - x\sqrt{4x^4 + 3x} = \frac{\left(2x^3 - x\sqrt{4x^4 + 3x}\right)\left(2x^3 + x\sqrt{4x^4 + 3x}\right)}{2x^3 + x\sqrt{4x^4 + 3x}} = \frac{-3x^3}{2x^3 + x\sqrt{4x^4 + 3x}}$

Dividing by x^3 , the biggest power of x (the powers are x^3 , $x\sqrt{x^4}=x^3$ and $x\sqrt{x}=x^{3/2}$) in the denominator:

$$\frac{-3x^3}{2x^3 + x\sqrt{4x^4 + 3x}} = \frac{-3}{2 + \sqrt{4 + \frac{3}{x^3}}} \xrightarrow{x \to \infty} \frac{-3}{2 + \sqrt{4 + 0}} = -\frac{3}{4}$$

Hence, $\lim_{x\to\infty} \left(2x^3 - x\sqrt{4x^4 + 3x}\right) = -\frac{3}{4}.$