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A victory for the French peasant...”

e The Apéry numbers 1,5,73,1445, ...

satisfy A(n) = é (Z) 2 (n Z k) 2

(n+ 13U, = 2n+ 1)1 + 170 + 5)up, — n3up,_1.

THM ((3) = >>° | L is irrational.

Apéry '78

* Someone's “sour comment” after Henri Cohen's report on Apéry's proof at the '78 ICM in Helsinki.
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A victory for the French peasant...”

e The Apéry numbers 1,5,73,1445, ...
n n 2 n+k 2
A=Y
. k k
satisfy k=0

(n+ 13U, = 2n+ 1)1 + 170 + 5)up, — n3up,_1.

THM ((3) = 3> | L is irrational.

Apéry '78 n=1

proof The same recurrence is satisfied by the “near”-integers

w2 () (1) (S5 Emdem

k=0

Then, ﬁgzg — ((3). But too fast for ((3) to be rational. O

* Someone's “sour comment” after Henri Cohen's report on Apéry's proof at the '78 ICM in Helsinki.
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A victory for the French peasant...”

e The Apéry numbers 1,5,73,1445, ...

-0

satisfy k=0

(n+ 13U, = 2n+ 1)1 + 170 + 5)up, — n3up,_1.

THM ((3) = 3> | L is irrational.

Apéry '78

After a few days of fruitless effort the specific problem was
mentioned to Don Zagier (Bonn), and with irritating speed
he showed that indeed the sequence satisfies the recurrence.
Alfred van der Poorten — A proof that Euler missed. .. (1979)

* Someone's “sour comment” after Henri Cohen's report on Apéry's proof at the '78 ICM in Helsinki.
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A victory for the French peasant...”

e The Apéry numbers 1,5,73,1445, ...
n n 2 n+k 2
A=Y
. k k
satisfy k=0

(n+ 13U, = 2n+ 1)1 + 170 + 5)up, — n3up,_1.

THM ¢(3) =52 . L s irrational.

Apéry'78 n=1n

After a few days of fruitless effort the specific problem was
mentioned to Don Zagier (Bonn), and with irritating speed
he showed that indeed the sequence satisfies the recurrence.
Alfred van der Poorten — A proof that Euler missed. .. (1979)

Nowadays, there are excellent implementations of this creative telescoping, including:
® HolonomicFunctions by Koutschan (Mathematica)

® Sigma by Schneider (Mathematica)

® ore_algebra by Kauers, Jaroschek, Johansson, Mezzarobba (Sage)

(These are just the ones | use on a regular basis. . .)

* Someone's “sour comment” after Henri Cohen's report on Apéry's proof at the '78 ICM in Helsinki.

Interpolated sequences and critical L-values of modular forms Armin Straub

2/11



Zagier’s search and Apéry-like numbers

e The Apéry numbers B(n) = Z < > (n+ k) for ((2) satisfy

(n+ 1)2un+1 = (zm +an + b)uy, — enun_1, (a,b,c) = (11,3,-1).

..Q  Are there other tuples (a, b, c) for which the solution defined by
u_1 =0, ug = 1 is integral?
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Zagier’s search and Apéry-like numbers

e The Apéry numbers B(n) = Z < > (n+ k) for ((2) satisfy

(n+ 1) Upil = (zm +an + b)uy, — enun_1, (a,b,c) = (11,3,-1).

Q  Are there other tuples (a, b, ¢) for which the solution defined by

Beukers

u_1 =0, ug = 1 is integral?

e Apart from degenerate cases, Zagier found 6 sporadic integer solutions:

vl m * | Cun)

S0 gl

B L:J( 1)k3n= %<3k) (i]fg)! E ;O <Z> <2: ) <2(:: kk )>
< JE( ) Pl g oa
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L-value interpolations

Ll For primes p > 2, the Apéry numbers for ((3) satisfy
gren—
Ono

2000 AL = af(p) (modp?),

with f(r) = n(2r)*n(47)* =Y ap(n)q" € Sa(To(8)).
n>1

conjectured (and proved modulo p) by Beukers '87
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L-value interpolations

THM For primes p > 2, the Apéry numbers for ((3) satisfy

Ahlgren—

Ono
2000 A =as(p)  (modp?),
with f(7) = n(2r)'n(47)* =) ap(n)g" € Sa(To(8)).
n>1
conjectured (and proved modulo p) by Beukers '87

THM

Zagier A(_%) = %L(f, 2)

2016

0 2, N\ 2
® Here, A(z)=)" (2) (J’zk> is absolutely convergent for x € C.
k=0
® Predicted by Golyshev based on motivic considerations,
the connection of the Apéry numbers with the double covering
of a family of K3 surfaces, and the Tate conjecture.

D. Zagier
Arithmetic and topology of differential equations
Proceedings of the 2016 ECM, 2017
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L-value interpolations, cont’d

e Zagier found 6 sporadic integer solutions C(n) to: * one of A-F
(n 4+ 1)2upsq = (an® + an + bu, — en®up_y u_y =0,u9=1

THM There exists a weight 3 newform f.(7) = Y -, Vn,«q", so that
1985 Z

2619 C, (E )

Ypx  (modp).
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L-value interpolations, cont’d

e Zagier found 6 sporadic integer solutions C(n) to:

(n 4+ 1)%upi1 = (an® + an + b)u, — en’up,_1

* one of A-F

U1 = 0,71,() =1

THM There exists a weight 3 newform f.(7) = Zn>1 Yn,xq", so that

1985

Cu(%52) =7« (modp).

e C, D proved by Beukers—Stienstra ('85); A follows from their work

e F proved using a result Verrill ("10); B through p-adic analysis

e F conjectured by Osburn—S and proved by Kazalicki ('19) using
Atkin—Swinnerton-Dyer congruences for non-congruence cusp forms
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L-value interpolations, cont’d

e Zagier found 6 sporadic integer solutions C(n) to: * one of A-F

(n 4+ 1)2upsq = (an® + an + bu, — en®up_y u_1 =0,up =1

THM There exists a weight 3 newform f.(7) = Y -, Vn,«q", so that
1985 Z

Cu(%52) =7« (modp).

e C, D proved by Beukers—Stienstra ('85); A follows from their work

e F proved using a result Verrill ("10); B through p-adic analysis

e F conjectured by Osburn—S and proved by Kazalicki ('19) using
Atkin—Swinnerton-Dyer congruences for non-congruence cusp forms

THM For * one of A-F, except E, there is o, € Z such that
Osburn
S '18

Cu(~3) = S L(£.,2).
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L-value interpolations, cont’d

e Zagier found 6 sporadic integer solutions C(n) to: * one of A-F

(n 4+ 1)2upsq = (an® + an + bu, — en®up_y u_1 =0,up =1

THM There exists a weight 3 newform f.(7) = Y -, Vn,«q", so that
1985 Z

Cu(%52) =7« (modp).

e C, D proved by Beukers—Stienstra ('85); A follows from their work

e F proved using a result Verrill ("10); B through p-adic analysis

e F conjectured by Osburn—S and proved by Kazalicki ('19) using
Atkin—Swinnerton-Dyer congruences for non-congruence cusp forms

THM For * one of A-F, except E, there is o, € Z such that
Osburn
S '18

Cu(~3) = S L(£.,2).

6
For sequence E, res Cg(z) = < L(fg,1).
2 i

z=-1/
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L-value interpolations, cont’d

Cu(~$) = SL(£,2)
* | Cu(n) £u(7) N | oM o
* kz% <Z>3 % 32 | Qv-2) | 8
¢ :0 <Z> 2 (2: > n(27)°n(67)* 12 | ow=3) | 12
° k:] <Z>2(n2k> n(4r)° 16 | ov=T) | 16
£ ,:0 <Z> (2: > <2E7: : )> n(r)’n(2r)ndr)ner)* | 8 | Q(vV-2) | 6
F kio(—l)kgn—k (Z) Catk) | q—24+36+ ... 2 | oD | 6
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Challenge: A=B

Q Can we extend the tools for A = B to A = B?
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Challenge: A=B

Q Can we extend the tools for A = B to A = B?

EG i _p1
Osburn-S FOI’ prlmes p > 2 and n 5
2018
Ln/3] . ,
kan—sk [ ) (3k)! _ a2 /n+k
Z (=178 <3k:) [E Z L i (mod p).
k=0 -
Cp(n) ()
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Challenge: A=B

Q Can we extend the tools for A = B to A = B?

EG  For primes p > 2 and n = 21,

Osburn-S 2
2018
[n/3] n 2
vkan—3k [T\ BK)! _ n n+k
kzzo( s <3k:> 13 _kzzo k k i)
Cp(n) Cp(n)

EG  For primes p > 2 and n = 232,
Osburn-
S-Zudilin

TR B )
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Challenge: A=B

Q Can we extend the tools for A = B to A = B?

EG  For primes p > 2 and n = 21,

Osburn-S 2
2018
[n/3] n 2
I (3K)! _ n\ (n+k
kzzo( D <3k:> AE _kzzo k k (modp).
Cp(n) Cp(n)

EG — p-1
Osburn. For primes p > 2 and n = 5=,

TR rg e e

e Our proof of this congruence relies on finding (?!) the identity

RHS — Z (3n+1> <nzk>3
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Challenge: A=B

Q Can we extend the tools for A = B to A = B?

LEM : _p1
Osburn- For p”meS p > 2 and n = 5
S-Zudilin

2018 @

kz_o(—m (n ;: k:>3 (Z>3(1 — 3k(2Hy, — Hyx — Hyi))
n 2 2
_ kzzo <” ! k) (Z) (mod p?).
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Challenge: A=B

Q Can we extend the tools for A = B to A = B?

LEM p—1
Osburn For p”mes p > 2 and n = 5

- S (-1 <n : k>3 (Z>3(1 = Sk(2Hy = Hupe = Ho-))

2018
k=0

STV

e Our proof of this congruence relies on finding the identity

v SR (00

X (2 + (TL — 2/{)(5Hk —b5H, ) — Hpyp + H2nfk))-
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Creative telescoping

Goal: a recurrence for Z (k) <n + k> ZA n, k)

k=0
Let S, be such that S, f(n,k) = f(n+1,k).

Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger
A=B
A. K. Peters, Ltd., 1st edition, 1996
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Creative telescoping

Goal: a recurrence for Z (k) <n + k> ZA n, k)

k=0
Let S, be such that S, f(n,k) = f(n+1,k).

e Suppose we have P(n,S,) € Q[n,S,] and R(n, k) € Q(n, k) so that
P(n, Sp)A(n, k) = (Sk — 1)R(n, k)A(n, k).

Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger
A=B
A. K. Peters, Ltd., 1st edition, 1996
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Creative telescoping

Goal: a recurrence for Z (k) <n + k> ZA n, k)

k=0

Let S,, be such that S, f(n,k) = f(n+ 1,k).

e Suppose we have P(n,S,) € Q[n,S,] and R(n, k) € Q(n, k) so that
P(n, Sp)A(n, k) = (Sk — 1)R(n, k)A(n, k).

e Then: P(n,Sp) ZA(n, k)=0
kEZ

Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger
A=B
A. K. Peters, Ltd., 1st edition, 1996
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Creative telescoping

Goal: a recurrence for Z (k) (n + k> ZA n, k)

k=0
Let S, be such that S, f(n,k) = f(n+1,k).

e Suppose we have P(n,S,) € Q[n,S,] and R(n, k) € Q(n, k) so that
P(n, Sp)A(n, k) = (Sk — 1)R(n, k)A(n, k).

e Then: P(n,Sp) ZA(n, k)=0
kEZ

EGC  p(n,S,) = (n+2)352 — (2n + 3)(17n2 + 51n + 39)S, + (n + 1)3
4k*(2n + 3)(4n? — 2k% + 12n + 3k + 8)
(n—k+1)2(n—k+2)2

Automatically obtained using Koutschan's excellent HolonomicFunctions package for Mathematica.

R(n, k) =

Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger
A=B
A. K. Peters, Ltd., 1st edition, 1996
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Challenge: Interpolating sequences

Q  What is the proper way of defining C'(— %)

e For Apéry numbers A(n), Zagier used A(z) = Z ( ) <x + k> .

k=0
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Challenge: Interpolating sequences

Q  What is the proper way of defining C'(— %)

oo 2 9
o For Apéry numbers A(n), Zagier used A(z) = (i) <x Jkr k> .
k=0 N

=¢ P(z,5,)A(z) = %(21» + 3) sin(rz)

for all complex z, where P(x, S;) is Apéry’s recurrence operator.
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Challenge: Interpolating sequences

Q  What is the proper way of defining C'(— %)

oo 2 9
o For Apéry numbers A(n), Zagier used A(z) = (i) <x Jkr k> .
k=0 N

=¢ P(z,5,)A(z) = %(21» + 3) sin(rz)

for all complex z, where P(x, S;) is Apéry’s recurrence operator.

e Creative telescoping: P(x,S;)A(z, k) = (S — 1)R(z, k) A(z, k)

=

P(xz,S,;) Az, k) = R(z, K)A(x, K) — R(x,0)A(x,0)
h=0 = R(z, K)A(z, K)
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Challenge: Interpolating sequences

Q  What is the proper way of defining C'(— %)

oo 2 9
o For Apéry numbers A(n), Zagier used A(z) = (i) <x Jkr k> .
k=0 N

=¢ P(z,5,)A(z) = %(21» + 3) sin(rz)

for all complex z, where P(x, S;) is Apéry’s recurrence operator.

e Creative telescoping: P(x,S;)A(z, k) = (S — 1)R(z, k) A(z, k)

=

P(xz,S,;) Az, k) = R(z, K)A(x, K) — R(x,0)A(x,0)
o = R(z, K)A(z. K)

[—8(2z 4+ 3)K” + O(K)] [&:zgf)jLO(;S)]
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Challenge: Interpolating sequences

Q  What is the proper way of defining C'(— %)

oo 2 9
o For Apéry numbers A(n), Zagier used A(z) = (i) <x Jkr k> .
k=0 N

=¢ P(z,5,)A(z) = %(21» + 3) sin(rz)

for all complex z, where P(x, S;) is Apéry’s recurrence operator.

o0

" 2 3
e For the ((2) Apéry numbers B(n), we use B(z) = Z (2) (l Z k)

k=0
However:

e The series diverges if Re z < —1.
o Q(x,S5,)B(x) =0 where Q(x, S,) is Apéry's recurrence operator.
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Challenge: Interpolating sequences

Q  What is the proper way of defining C'(— %)
p . > x+k
e For Apéry numbers A(n), Zagier used A(z) = Z ( ) ( > :

k=0
diverges for n € Z>¢

£ g ()

=
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Challenge: Interpolating sequences

Q  What is the proper way of defining C'(— %)
p . > x+k
e For Apéry numbers A(n), Zagier used A(z) = Z ( ) ( > :

k=0
diverges for n € Z>¢

EG n 2 1
2k -n,—n, s
@ cem=32(3) (1) =2 (01
‘ k k 1,1

=
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Challenge: Interpolating sequences

Q  What is the proper way of defining C'(— %)
p . > x+k
e For Apéry numbers A(n), Zagier used A(z) = Z ( ) ( > :

k=0
EG n 2 1
n 2k —-n,—"n,35

S £ )

k=0

We use the interpolation Cc(z) = Re 3F; <7

Interpolated sequences and critical L-values of modular forms Armin Straub




Challenge: Interpolating sequences

Q  What is the proper way of defining C'(— %)
p . > x+k
e For Apéry numbers A(n), Zagier used A(z) = Z ( ) ( > :

k=0
EG n 2 1
n 2k —-n,—"n,35

S £ )

k=0

We use the interpolation Cc(z) = Re 3F; <7

" em=E @)
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Challenge: Interpolating sequences

Q  What is the proper way of defining C'(— %)
p . > x+k
e For Apéry numbers A(n), Zagier used A(z) = Z ( ) < > .

k=0
EG n 2 1
n 2k —-n,—"n,35

S £ )

k=0

-z, —x
1,1

12

1N
=S () - (e (700

This has a simple pole at n = —%.

We use the interpolation Cc(z) = Re 3F; <
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Challenge: Interpolating sequences

Q  What is the proper way of defining C'(— %)

[eS) 2 2
o For Apéry numbers A(n), Zagier used A(z) = (i) (x + k> .

k
k=0

R (RG0!

k1,k2,k3,ka=0 1=1
k1+ko=k3+ky

How to compute C(—3)?

(2 analytic solutions)

® RE: order 4, degree 15
® DE: order 7, degree 17
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Challenge: Interpolating sequences

Q  What is the proper way of defining C'(— %)

o For Apéry numbers A(n), Zagier used A(z) = (i) <x - k> .
k=0 "

R (RG0!

k1,k2,k3,ka=0 1=1
k1+ko=k3+ky

® RE: order 4, degree 15
® DE: order 7, degree 17

(2 analytic solutions)

How to compute C(—3)?

THM For any odd prime p,
McCarthy,
Osburn,

S 2018 C’(%) = ~(p) (mod p?), n'2(2r) = Z v(n)g" € Se(T'o(4))

Q Is there a Zagier-type interpolation?
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Challenge: computing values of 7(7) at CM points

Q How to efficiently compute 7(7) for quadratic irrationalities 77

Lots of papers would benefit from a CAS implementation!

e Dedekind eta function: the prototypical modular form of weight %

17(7_) _ e?TiT/lQ H(l o eQm‘nr).

n=>1
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Challenge: computing values of 7(7) at CM points

Q How to efficiently compute 7(7) for quadratic irrationalities 77

Lots of papers would benefit from a CAS implementation!

e Dedekind eta function: the prototypical modular form of weight %

7T’L7'/12 H

n>1
= 1) = 55T(3)
03(0) = —=T ()
_rore)

b1 +iv2) = —

oo (-1p8)' - B0

911/34

27rzn7'

os(r) = Y4 =

neL

5

n(r)

n(7/2)*n(27)?
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Challenge: computing values of 7(7) at CM points

Q How to efficiently compute 7(7) for quadratic irrationalities 77

Lots of papers would benefit from a CAS implementation!

THM h —d 3w
Chowla— —6 24 E T
o I_I In(75)] 6h[IIF a ]
where the product is over reduced binary quadratic forms
laj,bj, c;] of discriminant —d < 0. 7y = —2tv=d
J

here, —d is a fundamental discriminant; w is number of roots of unity in Q(v/—d)
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Challenge: computing values of 7(7) at CM points

Q How to efficiently compute 7(7) for quadratic irrationalities 77

Lots of papers would benefit from a CAS implementation!

;I;HIIVI h d 3w
[EeIER —6 24 k %
Selb | | T I I F 2

1967 In( J )l 6h [ d ]

where the product is over reduced binary quadratic forms
laj,bj, c;] of discriminant —d < 0. 7y = htved

2a;

here, —d is a fundamental discriminant; w is number of roots of unity in Q(v/—d)

e The |n(7;)| only differ by an algebraic factor:

e 75 =M -1 for some M € GLy(Z).

w10 on with () —
f(r) = DM 7) is a modular function with f(71) = (m)

Armin Straub
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Challenge: computing values of 7(7) at CM points

Q How to efficiently compute 7(7) for quadratic irrationalities 77

Lots of papers would benefit from a CAS implementation!

FACT f a modular function, 79 a quadratic irrationality
—>  f(7p) is an algebraic number.
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Challenge: computing values of 7(7) at CM points

Q How to efficiently compute 7(7) for quadratic irrationalities 77

Lots of papers would benefit from a CAS implementation!

FACT f a modular function, 79 a quadratic irrationality
—>  f(7p) is an algebraic number.

e A1y =1 for some A € GLy(Z)

e Two modular functions are related by a modular equation:

P(f(A-7),f(1)) =0

e Hence: f(79) is a root of P(z,z) = 0.

BUT Complexity of modular equations increases very quickly.
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Challenge: computing values of 7(7) at CM points

Q How to efficiently compute 7(7) for quadratic irrationalities 77

Lots of papers would benefit from a CAS implementation!

FACT f a modular function, 79 a quadratic irrationality
—>  f(7p) is an algebraic number.

o j(7) = q ! + 744 + 196884¢ + 21493760¢> + - - - ¢ = e2miT

e Modular polynomial ®y € Z[xz,y] such that ®x(j(NT),j(7)) = 0.

EG Dy(z,y) = 2° +4° —2%y* +2* - 3 31(2® + 29?)
—2%.3%. 532 + ¢?) + 3* - 5% - 4027y
+28.37. 5%z +y) —2'12.3°. 5
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Challenge: computing values of 7(7) at CM points

Q How to efficiently compute 7(7) for quadratic irrationalities 77

Lots of papers would benefit from a CAS implementation!

FACT f a modular function, 79 a quadratic irrationality
—>  f(7p) is an algebraic number.

o j(7) = q 1 + 744 + 196884q + 21493760¢> + - - - -
e Modular polynomial ®y € Z[xz,y] such that ®x(j(NT),j(7)) = 0.
EG _ .3 3 2,2 4 2 2
By (x,y) = 2% +4° — 2%y? + 2* - 3-31(2? + z9?)

4 4 3(,.2 2 4 3
@y is O(N*log N) bits | — 2 '3 (z° 4+ y°) + 3% - 5° - 402Tzy
+28.37'56(x+y)_212.39.59
D1y (2,y) = '+ y2 — 2ty + 818421y — 2827875621 y°

ol ) iz 0 + ...several pages...+
Kaltofen—Yui (1984) + 392423345094527654908696 . . . 100 digits . . . 000
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Challenge: computing values of 7(7) at CM points

Q How to efficiently compute 7(7) for quadratic irrationalities 77

Lots of papers would benefit from a CAS implementation!

FACT f a modular function, 79 a quadratic irrationality
—>  f(7p) is an algebraic number.

Other options for evaluating f(7):
e via PSLQ/LLL and rigorous bounds
e via class field theory (Shimura reciprocity)

1+\/—23)
2

EG . . . .
class field 10 evaluate j( , we determine its Galois conjugates:

theory
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks

D. McCarthy, R. Osburn, A. Straub
Sequences, modular forms and cellular integrals
Mathematical Proceedings of the Cambridge Philosophical Society, 2018

R. Osburn, A. Straub

Interpolated sequences and critical L-values of modular forms

Chapter 14 of the book: Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory
Editors: J. Bliimlein, P. Paule and C. Schneider; Springer, 2019, p. 327-349

R. Osburn, A. Straub, W. Zudilin
A modular supercongruence for g F5: An Apéry-like story
Annales de I'Institut Fourier, Vol. 68, Nr. 5, 2018, p. 1987-2004

D. Zagier
Arithmetic and topology of differential equations
Proceedings of the 2016 ECM, 2017

Interpolated sequences and critical L-values of modular forms Armin Straub 1/11



http://arminstraub.com/talks

