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Assorted background
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The Riemann zeta function

• The Riemann zeta function is the analytic continuation of

ζ(s) =

∞∑
n=1

1

ns
=

∏
p prime

1

1− p−s
.

• Its zeros and values are fundamental, yet mysterious to this day.

If ζ(s) = 0 then s ∈ {−2,−4, . . .} or Re (s) = 1
2 .CONJ

RH

ζ(2) =
π2

6
, ζ(4) =

π4

90
, . . . , ζ(2n) =

(−1)n+1(2π)2nB2n

2(2n)!

THM
Euler
1734

π, ζ(3), ζ(5), . . . are algebraically independent over Q.CONJ

ζ(3) is irrational.THM
Apéry ’78
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Irrationality and transcendence of zeta values

π, ζ(3), ζ(5), . . . are algebraically independent over Q.CONJ

• Open: ζ(5) is irrational

• Open: ζ(3) is transcendental

• Open: ζ(3)/π3 is irrational

• Open: Catalan’s constant G =
∞∑
n=0

(−1)n

(2n+ 1)2
is irrational
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Values of modular forms and functions at CM points

h∏
j=1

a−6
j |η(τj)|24 =

1

(2πd)6h

[ d∏
k=1

Γ
(
k
d

)(−d
k

)
]3w

where the product is over reduced binary quadratic forms
[aj , bj , cj ] of discriminant −d < 0. τj =

−bj+
√
−d

2aj

THM
Chowla–
Selberg

1967

throughout, −d is a fundamental discriminant; w is number of roots of unity in Q(
√
−d)
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2aj

THM
Chowla–
Selberg

1967

throughout, −d is a fundamental discriminant; w is number of roots of unity in Q(
√
−d)

Q(
√
−15) has discriminant −d = −15 and class number h = 2.

Q1 = [1, 1, 4]

τ1 = −1
2 + 1

2

√
−15

,
Q2 = [2, 1, 2]

τ2 = 1
2τ1

1√
2
|η(τ1)η(τ2)|2 =

1

30π

(
Γ( 1

15)Γ( 2
15)Γ( 4

15)Γ( 8
15)

Γ( 7
15)Γ(11

15)Γ(13
15)Γ(14

15)

)1/2

=
1

120π3
Γ( 1

15)Γ( 2
15)Γ( 4

15)Γ( 8
15)

EG
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2aj
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Selberg
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throughout, −d is a fundamental discriminant; w is number of roots of unity in Q(
√
−d)

If σ1, σ2 ∈ H ∩Q(
√
−d), then η(σ1)

η(σ2) is algebraic.LEM

• σ2 = M · σ1 and σ1 = N · σ1 for some M,N ∈ GL2(Z). [M 6= id]

• f(τ) = η(τ)
η(M ·τ) and f(N · τ) are modular functions.

• There is an algebraic relation Φ(f(τ), f(N · τ)) = 0.

• Then: Φ(f(σ1), f(σ1)) = Φ(η(σ1)
η(σ2) ,

η(σ1)
η(σ2) ) = 0

Proof.
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throughout, −d is a fundamental discriminant; w is number of roots of unity in Q(
√
−d)

If σ1, σ2 ∈ H ∩Q(
√
−d), then η(σ1)

η(σ2) is algebraic.LEM

For each Q(
√
−d), let ωd =

1

π1/2

[ d∏
k=1

Γ
(
k
d

)( −d
k )
]w/(4h)

.

For any weight k modular form f(τ) and any σ ∈ H ∩ Q(
√
−d), we

have f(σ) ∈ ωkdQ̄.

THM

[assuming the functions have algebraic Fourier coefficients]
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η(i) =
1

2π3/4
Γ(1

4)

θ3(i) =
1√

2π3/4
Γ(1

4) θ3(τ) =
∑
n∈Z

qn
2/2 =

η(τ)5

η(τ/2)2η(2τ)2

θ3(1 + i
√

2)4 =
Γ2(1

8)Γ2(3
8)

8
√

2π3

θ3

(
−1−i

√
3

2

)4
=

(
3− i

√
3
)

Γ6(1
3)

211/3π4
.

EG

Interpolated sequences and critical L-values of modular forms Armin Straub
5 / 40



Values of modular forms and functions at CM points

h∏
j=1

a−6
j |η(τj)|24 =

1

(2πd)6h

[ d∏
k=1

Γ
(
k
d

)(−d
k

)
]3w

where the product is over reduced binary quadratic forms
[aj , bj , cj ] of discriminant −d < 0. τj =

−bj+
√
−d

2aj

THM
Chowla–
Selberg

1967

throughout, −d is a fundamental discriminant; w is number of roots of unity in Q(
√
−d)

η(i) =
1

2π3/4
Γ(1

4)

θ3(i) =
1√

2π3/4
Γ(1

4) θ3(τ) =
∑
n∈Z

qn
2/2 =

η(τ)5

η(τ/2)2η(2τ)2

θ3(1 + i
√

2)4 =
Γ2(1

8)Γ2(3
8)

8
√

2π3

θ3

(
−1−i

√
3

2

)4
=

(
3− i

√
3
)

Γ6(1
3)
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EG

Question:
CAS implementation?
(We have efficient symbolic-numerical
algorithms for values of specific modular
functions like j and λ.)
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II

Apéry-like sequences
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Apéry numbers and the irrationality of ζ(3)

• The Apéry numbers 1, 5, 73, 1445, . . .

A(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)2

satisfy

(n+ 1)3A(n+ 1) = (2n+ 1)(17n2 + 17n+ 5)A(n)− n3A(n− 1).

ζ(3) =
∑∞

n=1
1
n3 is irrational.THM

Apéry ’78

The same recurrence is satisfied by the “near”-integers

B(n) =
n∑
k=0

(
n

k

)2(n+ k

k

)2
 n∑
j=1

1

j3
+

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

)
 .

Then, B(n)
A(n) → ζ(3). But too fast for ζ(3) to be rational.

Proof.
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Creative telescoping

Goal: a recurrence for
n∑
k=0

(
n

k

)2(n+ k

k

)2

=:

n∑
k=0

A(n, k)

Let Sn be such that Snf(n, k) = f(n+ 1, k).

• Suppose we have P (n, Sn) ∈ Q[n, Sn] and R(n, k) ∈ Q(n, k) so that

P (n, Sn)A(n, k) = (Sk − 1)R(n, k)A(n, k).

• Then: P (n, Sn)
∑
k∈Z

A(n, k) = 0

P (n, Sn) = (n+ 2)3S2
n − (2n+ 3)(17n2 + 51n+ 39)Sn + (n+ 1)3

R(n, k) =
4k4(2n+ 3)(4n2 − 2k2 + 12n+ 3k + 8)

(n− k + 1)2(n− k + 2)2

EG

Automatically obtained using Koutschan’s excellent HolonomicFunctions package for Mathematica.

Marko Petkovsek, Herbert S. Wilf and Doron Zeilberger
A = B
A. K. Peters, Ltd., 1st edition, 1996
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Zagier’s search and Apéry-like numbers

• Recurrence for Apéry numbers is the case (a, b, c) = (17, 5, 1) of

(n+ 1)3un+1 = (2n+ 1)(an2 + an+ b)un − cn3un−1.

Are there other tuples (a, b, c) for which the solution defined by
u−1 = 0, u0 = 1 is integral?

Q
Beukers,

Zagier

• Essentially, only 14 tuples (a, b, c) found. (Almkvist–Zudilin)

• 4 hypergeometric and 4 Legendrian solutions (with generating functions

3F2

( 1
2 , α, 1− α

1, 1

∣∣∣∣4Cαz) , 1

1− Cαz
2F1

(
α, 1− α

1

∣∣∣∣ −Cαz1− Cαz

)2

,

with α = 1
2 ,

1
3 ,

1
4 ,

1
6 and Cα = 24, 33, 26, 24 · 33)

• 6 sporadic solutions

• Similar (and intertwined) story for:
• (n+ 1)2un+1 = (an2 + an+ b)un − cn2un−1 (Beukers, Zagier)

• (n+ 1)3un+1 = (2n+ 1)(an2 + an+ b)un − n(cn2 + d)un−1 (Cooper)
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The six sporadic Apéry-like numbers

(a, b, c) A(n)

(17, 5, 1) Apéry numbers

∑
k

(
n

k

)2(n+ k

n

)2

(12, 4, 16)
∑
k

(
n

k

)2(2k

n

)2

(10, 4, 64) Domb numbers

∑
k

(
n

k

)2(2k

k

)(
2(n− k)

n− k

)

(7, 3, 81) Almkvist–Zudilin numbers

∑
k

(−1)k3n−3k

(
n

3k

)(
n+ k

n

)
(3k)!

k!3

(11, 5, 125)
∑
k

(−1)k
(
n

k

)3(4n− 5k

3n

)

(9, 3,−27)
∑
k,l

(
n

k

)2(n
l

)(
k

l

)(
k + l

n

)
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Modularity of Apéry-like numbers

• The Apéry numbers 1, 5, 73, 1145, . . .

A(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)2

satisfy

η7(2τ)η7(3τ)

η5(τ)η5(6τ)

1 + 5q + 13q2 + 23q3 + O(q4)

modular form

=
∑
n>0

A(n)

(
η12(τ)η12(6τ)

η12(2τ)η12(3τ)

)n
q − 12q2 + 66q3 + O(q4)

modular function

.

Not at all evidently, such a modular parametrization exists for
all known Apéry-like numbers!

FACT
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Modularity of Apéry-like numbers

• The Apéry numbers 1, 5, 73, 1145, . . .

A(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)2

satisfy

η7(2τ)η7(3τ)

η5(τ)η5(6τ)

1 + 5q + 13q2 + 23q3 + O(q4)

modular form

=
∑
n>0

A(n)

(
η12(τ)η12(6τ)

η12(2τ)η12(3τ)

)n
q − 12q2 + 66q3 + O(q4)

modular function

.

Not at all evidently, such a modular parametrization exists for
all known Apéry-like numbers!

FACT

• Context: f(τ) modular form of weight k
x(τ) modular function
y(x) such that y(x(τ)) = f(τ)

Then y(x) satisfies a linear differential equation of order k + 1.
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Supercongruences for Apéry numbers

• Chowla, Cowles, Cowles (1980) conjectured that, for primes p > 5,

A(p) ≡ 5 (mod p3).

• Gessel (1982) proved that A(mp) ≡ A(m) (mod p3).

The Apéry numbers satisfy the supercongruence (p > 5)

A(mpr) ≡ A(mpr−1) (mod p3r).

THM
Beukers,
Coster

’85, ’88

Interpolated sequences and critical L-values of modular forms Armin Straub
12 / 40



Supercongruences for Apéry numbers
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• Chowla, Cowles, Cowles (1980) conjectured that, for primes p > 5,

A(p) ≡ 5 (mod p3).

• Gessel (1982) proved that A(mp) ≡ A(m) (mod p3).

The Apéry numbers satisfy the supercongruence (p > 5)

A(mpr) ≡ A(mpr−1) (mod p3r).

THM
Beukers,
Coster

’85, ’88

For primes p, simple combinatorics proves the congruence(
2p

p

)
=
∑
k

(
p

k

)(
p

p− k

)
≡ 1 + 1 (mod p2).

For p > 5, Wolstenholme’s congruence shows that, in fact,(
2p

p

)
≡ 2 (mod p3).

EG
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Supercongruences for Apéry-like numbers

• Conjecturally, supercongruences like

A(mpr) ≡ A(mpr−1) (mod p3r)

hold for all Apéry-like numbers. Osburn–Sahu ’09

• Current state of affairs for the six sporadic sequences from earlier:

(a, b, c) A(n)

(17, 5, 1)
∑
k

(
n
k

)2(n+k
n

)2
Beukers, Coster ’87-’88

(12, 4, 16)
∑
k

(
n
k

)2(2k
n

)2
Osburn–Sahu–S ’16

(10, 4, 64)
∑
k

(
n
k

)2(2k
k

)(
2(n−k)
n−k

)
Osburn–Sahu ’11

(7, 3, 81)
∑
k(−1)k3n−3k

(
n
3k

)(
n+k
n

) (3k)!
k!3 open modulo p3

Amdeberhan–Tauraso ’16

(11, 5, 125)
∑
k(−1)k

(
n
k

)3(4n−5k
3n

)
Osburn–Sahu–S ’16

(9, 3,−27)
∑
k,l

(
n
k

)2(n
l

)(
k
l

)(
k+l
n

)
Gorodetsky ’18

Robert Osburn Brundaban Sahu

(University of Dublin) (NISER, India)
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III

Interpolations and critical
L-values
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The Golyshev–Zagier observation

For any odd prime p, the Apéry numbers for ζ(3) satisfy

A

(
p− 1

2

)
≡ af (p) (mod p2),

with f(τ) = η(2τ)4η(4τ)4 =
∑
n>1

af (n)qn ∈ S4(Γ0(8)).

THM
Ahlgren–

Ono
’00

conjectured (and proved modulo p) by Beukers ’87

A(−1
2) =

16

π2
L(f, 2)

THM
Zagier

’16

• Here, A(x) =
∞∑
k=0

(
x

k

)2(
x+ k

k

)2

is absolutely convergent for x ∈ C.

• Predicted by Golyshev based on motivic considerations, the connection of
the Apéry numbers with the double covering of a family of K3 surfaces, and
the Tate conjecture.
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Zagier’s six sporadic sequences

(n+ 1)2un+1 = (an2 + an+ b)un − cn2un−1

* (a, b, c) C∗(n)

A (7, 2,−8) Franel numbers

n∑
k=0

(
n

k

)3

B (9, 3, 27)
bn/3c∑
k=0

(−1)k3n−3k

(
n

3k

)
(3k)!

k!3

C (10, 3, 9)
n∑
k=0

(
n

k

)2(2k

k

)

D (11, 3,−1) Apéry numbers

n∑
k=0

(
n

k

)2(n+ k

n

)

E (12, 4, 32)
n∑
k=0

(
n

k

)(
2k

k

)(
2(n− k)

n− k

)

F (17, 6, 72)
n∑
k=0

(−1)k8n−k
(
n

k

)
CA(k)
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Congruences and L-valued interpolations

• For ∗ one of A-F , let C∗(n) be Zagier’s sporadic sequence.

For ∗ one of A-F , there exists a newform f∗(τ) =
∑

n>1 γn,∗q
n

of weight 3, such that, for all primes p > 2,

C∗(
p−1

2 ) ≡ γp,∗ (mod p).

THM
Beukers,
Stienstra
’85; OS

’18;
Kazalicki

’18

• C, D proved by Beukers–Stienstra (’85); A follows from their work

• E proved using a result Verrill (’10); B through p-adic analysis
• F conjectured by Osburn–S and proved by Kazalicki (’18) using

Atkin–Swinnerton-Dyer congruences for non-congruence cusp forms

For ∗ one of A-F , except E, there is α∗ ∈ Z such that

C∗(−1
2) =

α∗
π2
L(f∗, 2).

For sequence E, res
x=−1/2

CE(x) =
6

π2
L(fE , 1).

THM
OS ’18
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Interpolations of Zagier’s six sporadic sequences

* C∗(n) C∗(x)

A
n∑
k=0

(
n

k

)3 ∑
k>0

(
x

k

)3

B
bn/3c∑
k=0

(−1)k3n−3k

(
n

3k

)
(3k)!

k!3

∑
k>0

(−1)k3x−3k

(
x

3k

)
(3k)!

k!3

C
n∑
k=0

(
n

k

)2(2k

k

)
Re 3F2

(
−x,−x, 1/2

1, 1

∣∣∣∣4)

D
n∑
k=0

(
n

k

)2(n+ k

n

) ∑
k>0

(
x

k

)2(x+ k

x

)

E
n∑
k=0

(
n

k

)(
2k

k

)(
2(n− k)

n− k

) ∑
k>0

(
x

k

)(
2k

k

)(
2(x− k)

x− k

)

F
n∑
k=0

(−1)k8n−k
(
n

k

)
CA(k)

∑
k>0

(−1)k8x−k
(
x

k

)
CA(k)
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The weight 3 newforms of level N∗ and their L-values

* f∗(τ) N∗ CM L(f∗, 2) α∗

A
η(4τ)5η(8τ)5

η(2τ)2η(16τ)2
32 Q(

√
−2)

Γ2
(

1
8

)
Γ2
(

3
8

)
64
√

2π
8

B η(4τ)6 16 Q(
√
−1)

Γ4
(

1
4

)
64π

8

C η(2τ)3η(6τ)3 12 Q(
√
−3)

Γ6
(

1
3

)
217/3π2

12

D η(4τ)6 16 Q(
√
−1)

Γ4
(

1
4

)
64π

16

E η(τ)2η(2τ)η(4τ)η(8τ)2 8 Q(
√
−2)

Γ2
(

1
8

)
Γ2
(

3
8

)
192π

6

F q − 2q2 + 3q3 + . . . 24 Q(
√
−6)

Γ
(

1
24

)
Γ
(

5
24

)
Γ
(

7
24

)
Γ
(

11
24

)
96
√

6π
6

C∗(−1
2) =

α∗
π2
L(f∗, 2)
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L-values of newforms with complex multiplication

A newform has CM by a quadratic field K (necessarily imaginary
and unique) if and only if it comes from a Hecke character of
K.

THM
Ribet

’76

• L-values can then be approached using the work of Damerell (’70)

• L-values for A-E computed by Rogers, Wan and Zucker (’15) using
binary theta series

• More recent work on explicitly evaluating L-values of CM modular
forms by Li, Long, Tu (’18)

W.-C. W. Li, L. Long and F.-T. Tu
Computing special L-values of certain modular forms with complex multiplication
SIGMA, 14(090), 2018, p. 1–32

M. Rogers, J. G. Wan and I. J. Zucker
Moments of elliptic integrals and critical L-values
Ramanujan Journal, 37, 2015, p. 113–130
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Congruences and interpolations for cellular integrals

• For an explicit family σN of convergent configurations,
AσN (n) = CD(n)(N−3)/2. More shortly!

• For odd k > 3, consider the weight k binary theta series

fk(τ) =
1

4

∑
(n,m)∈Z2

(−1)m(k−1)/2(n− im)k−1qn
2+m2

=:
∑
n>1

γk(n)qn.

Let N > 5 be odd and k = N − 2. Then, for all primes p > 5,

AσN (p−1
2 ) ≡ γk(p) (mod p2).

THM
McCarthy,

OS ’18

Let N > 5 be odd and k = N − 2. Then,

AσN (−1
2) =

αk
πk−1

L(fk, k − 1),

where αk are explicit rational numbers, defined recursively.

THM
OS ’18
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IV

Selected details and proof
sketches
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Proof of an interpolation: a simple case

CD(−1
2) =

16

π2
L(fD, 2)

LEM

Here, CD(x) =
∑
k>0

(
x

k

)2(
x+ k

x

)

= 3F2

(
−x,−x, x+ 1

1, 1

∣∣∣∣1).

Using hypergeometric identities,

CD(− 1
2 ) = 3F2

( 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣1) =
Γ4( 1

4 )

4π3
.

It remains to show L(fD, 2) =
Γ4( 1

4 )

64π
.

[Rogers, Wan and Zucker (’15)]

Proof.

• For more challenging cases, a modular parametrization is crucial:

3F2

( 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣4λ(τ)(1− λ(τ))

)
= 2F1

( 1
2 ,

1
2

1

∣∣∣∣λ(τ)

)2

= θ3(τ)4

• For τ = i, we get λ(i) = 1
2 and θ3(i)2 = Γ2(1/4)

2π3/2 .
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2) =

16

π2
L(fD, 2)

LEM

Here, CD(x) =
∑
k>0

(
x

k

)2(
x+ k

x

)
= 3F2

(
−x,−x, x+ 1

1, 1

∣∣∣∣1).

Using hypergeometric identities,

CD(− 1
2 ) = 3F2

( 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣1) =
Γ4( 1

4 )

4π3
.

It remains to show L(fD, 2) =
Γ4( 1

4 )

64π
.

[Rogers, Wan and Zucker (’15)]

Proof.

• For more challenging cases, a modular parametrization is crucial:

3F2

( 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣4λ(τ)(1− λ(τ))

)
= 2F1

( 1
2 ,

1
2

1

∣∣∣∣λ(τ)

)2

= θ3(τ)4

• For τ = i, we get λ(i) = 1
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Proof another interpolation: tricky case

CF (−1
2) =

6

π2
L(fF , 2)

=
Γ( 1

24)Γ( 5
24)Γ( 7

24)Γ(11
24)

16
√

6π3

LEM
Zudilin

’18

• Here, CF (− 1
2 ) =

1√
8

∞∑
k=0

2−5k

(
2k

k

)
CA(k)

=
1√
8
g

(
1

32

)
where

g(z) =

∞∑
k=0

zk
(

2k

k

) k∑
j=0

(
k

j

)3

has the modular parametrization [Chan, Tanigawa, Yang, Zudilin (’11)]

g

(
x(τ)

(1− x(τ))2

)
=

1

6
(6E2(6τ) + 3E2(3τ)− 2E2(2τ)− E2(τ)),

with

x(τ) =

(
η(τ)η(6τ)

η(2τ)η(3τ)

)12

, E2(τ) = 1− 24

∞∑
n=1

nqn

1− qn
.

• Setting τ = i/
√

6 then leads to the result.
(On the other hand, L(fF , s) is a Hecke L-series on the field Q(

√
−6).)
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V

Brown’s cellular integrals
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Beukers’ proof of the irrationality of ζ(3)

In = (−1)n
∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)n

(1− xy)n+1
dxdy

Jn =
1

2

∫ 1

0

∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)nwn(1− w)n

(1− (1− xy)w)n+1
dxdydw

• Beukers showed that

In = a(n)ζ(2) + ã(n), Jn = b(n)ζ(3) + b̃(n)

where ã(n), b̃(n) ∈ Q and

a(n) =
n∑
k=0

(
n

k

)2(n+ k

k

)
, b(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)2

.

• Brown realizes these as period integrals, for N = 5, 6, on the moduli
space M0,N of curves of genus 0 with N marked points.
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Brown’s cellular integrals

Period integrals on M0,N are Q-linear combinations of multiple
zeta values (MZVs). (conjectured by Goncharov–Manin, 2004)

THM
Brown
2009

• Examples of such integrals can be written as: (ai, bj , cij ∈ Z)∫
0<t1<...<tN−3<1

∏
taii (1− tj)bj (ti − tj)cijdt1 . . . dtN−3

• Typically involve MZVs of all weights 6 N − 3.

• Brown constructs families of integrals Iσ(n), for which MZVs of
submaximal weight vanish.
Here, σ are certain (“convergent”) permutations in SN .

N 5 6 7 8 9 10 11

# of σ 1 1 5 17 105 771 7028
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One of Brown’s cellular integrals

• One of the 17 permutations for N = 8 is σ = (8, 3, 6, 1, 4, 7, 2, 5).

• Cellular integral Iσ(n) =
∫

∆ f
n
σ ωσ where ∆ : 0 < t2 < . . . < t6 < 1

fσ =
(−t2)(t2 − t3)(t3 − t4)(t4 − t5)(t5 − t6)(t6 − 1)

(t3 − t6)(t6)(−t4)(t4 − 1)(1− t2)(t2 − t5)
, ωσ =

dt2dt3dt4dt5dt6
(t3 − t6)(t6)(−t4)(t4 − 1)(1− t2)(t2 − t5)

.

Iσ(0) = 16ζ(5)− 8ζ(3)ζ(2)

Iσ(1) = 33Iσ(0)− 432ζ(3) + 316ζ(2)− 26

Iσ(2) = 8929Iσ(0)− 117500ζ(3) + 515189
6 ζ(2)− 331063

48

EG
Panzer:

HyperInt

• OGF of Iσ(n) satisfies a Picard–Fuchs DE of order 7 (Lairez).
With 2-dimensional space of analytic solutions at 0.

• The leading coefficients of Iσ(n) are:

1, 33, 8929, 4124193, 2435948001, 1657775448033, . . .
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One of Brown’s cellular integrals, cont’d

• One of the 17 permutations for N = 8 is σ = (8, 3, 6, 1, 4, 7, 2, 5).
• Cellular integral Iσ(n) =

∫
∆ f

n
σ ωσ where

• The leading coefficients Aσ(n) of Iσ(n) are:

1, 33, 8929, 4124193, 2435948001, 1657775448033, . . .

Aσ(n) =

n∑
k1,k2,k3,k4=0
k1+k2=k3+k4

4∏
i=1

(
n

ki

)(
n+ ki
ki

)LEM
McCarthy,

Osburn,
S 2018
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Aσ(n) =
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k1,k2,k3,k4=0
k1+k2=k3+k4

4∏
i=1

(
n

ki

)(
n+ ki
ki

)LEM
McCarthy,

Osburn,
S 2018

For each N > 5 and convergent σN , the leading coefficients
AσN (n) satisfy (p > 5)

AσN (mpr) ≡ AσN (mpr−1) (mod p3r).

CONJ
McCarthy,

Osburn,
S 2018

For N = 5, 6 these are the supercongruences proved by Beukers and Coster.
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n

ki

)(
n+ ki
ki

)LEM
McCarthy,

Osburn,
S 2018

For any odd prime p,

Aσ

(p− 1

2

)
≡ γ(p) (mod p2).

where η12(2τ) =
∑
n>1

γ(n)qn is the unique newform in S6(Γ0(4)).

THM
McCarthy,

Osburn,
S 2018
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The Ahlgren–Ono supercongruences

For any odd prime p, the Apéry numbers for ζ(3) satisfy

A

(
p− 1

2

)
≡ α(p) (mod p2),

with η(2τ)4η(4τ)4 =
∑
n>1

α(n)qn the unique newform in S4(Γ0(8)).

THM
Ahlgren–

Ono
’00

For any prime p > 5, the Apéry numbers for ζ(2) satisfy

B

(
p− 1

2

)
≡ β(p) (mod p2),

with η(4τ)6 =
∑
n>1

β(n)qn the unique newform in S3(Γ0(16), (−4
· )).

THM
Ahlgren

’01

• conjectured (and proved modulo p) by Beukers ’87
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An infinite family of supercongruences

• AσN (n) = B(n)(N−3)/2 is one of Brown’s sequences for a certain σN .
Here, B(n) are the Apéry numbers for ζ(2).

• For odd k > 3, consider the weight k binary theta series

fk(τ) =
1

4

∑
(n,m)∈Z2

(−1)m(k−1)/2(n− im)k−1qn
2+m2

=
∑
n>1

γk(n)qn.

Let N > 5 be odd. For any prime p > 5,

AσN

(p− 1

2

)
≡ γN−2(p) (mod p2).

THM
McCarthy,

Osburn,
S 2018

Supercongruences for all of Brown’s sequences?
Maybe arising from L-series attached to Galois representations?

Q
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Hypergeometric supercongruences

(p > 3)

4F3

( 1
2 ,

1
2 ,

1
2 ,

1
2

1, 1, 1

∣∣∣∣1)
p−1

≡ α(p) (mod p3),

with η(2τ)4η(4τ)4 =
∑
n>1

α(n)qn the unique newform in S4(Γ0(8)).

THM
Kilbourn

2006

• This result proved the first of 14 related supercongruences
conjectured by Rodriguez-Villegas (2001) between
• truncated hypergeometric series 4F3 and
• Fourier coefficients of modular forms of weight 4.

• 11 of these remained open until recently proved by Long, Tu, Yui,
Zudilin (2017).
McCarthy (2010), Fuselier–McCarthy (2016) prove one each; McCarthy (2010) proves “half” of each of the 14.

Can the supercongruences for Brown’s sequences be similarly
embedded in the hypergeometric setting?

Q
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McCarthy (2010), Fuselier–McCarthy (2016) prove one each; McCarthy (2010) proves “half” of each of the 14.

Can the supercongruences for Brown’s sequences be similarly
embedded in the hypergeometric setting?

Q
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1
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1
2
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A supercongruence for 6F5

6F5

( 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

1, 1, 1, 1, 1

∣∣∣∣1)
p−1

≡ λ(p) (mod p3),

for primes p > 2. Here, λ(n) are the Fourier coefficients of

η(τ)8η(4τ)4 + 8η(4τ)12 =
∑
n>1

λ(n)qn ∈ S6(Γ0(8)).

THM
Osburn,

S, Zudilin
2018

• Conjectured by Mortenson based on numerical evidence, which further
suggests it holds modulo p5.

• A result of Frechette, Ono and Papanikolas expresses the λ(p) in terms of
Gaussian hypergeometric functions.

• Osburn and Schneider determined the resulting Gaussian hypergeometric
functions modulo p3 in terms of sums involving harmonic sums.

Why do these supercongruences hold?Q

Promising explanation suggested by Roberts, Rodriguez-Villegas (2017)
in terms of gaps between Hodge numbers of an associated motive.
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VI

L-value interpolations for
cellular integrals
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Congruences and interpolations for cellular integrals

• For an explicit family σN of convergent configurations,
AσN (n) = CD(n)(N−3)/2.

• For odd k > 3, consider the weight k binary theta series

fk(τ) =
1

4

∑
(n,m)∈Z2

(−1)m(k−1)/2(n− im)k−1qn
2+m2

=:
∑
n>1

γk(n)qn.

Let N > 5 be odd and k = N − 2. Then, for all primes p > 5,

AσN (p−1
2 ) ≡ γk(p) (mod p2).

THM
McCarthy,

OS ’18

Let N > 5 be odd and k = N − 2. Then,

AσN (−1
2) =

αk
πk−1

L(fk, k − 1),

where αk are explicit rational numbers, defined recursively.

THM
OS ’18
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Interpolations for cellular integrals

Let N > 5 be odd and k = N − 2. Then,

AσN
(− 1

2 ) =
αk
πk−1

L(fk, k − 1),

where αk are given as follows:

αk = 2(k+1)/2(k − 2)

{
2/r(k−1)/2, if k ≡ 1 (mod 4),
1/s(k−1)/2, if k ≡ 3 (mod 4).

Here, rn is defined by r2 = 1/5, r3 = 0 and

(2n+ 1)(n− 3)rn = 3

n−2∑
k=2

rkrn−k

for n > 4, and sn is defined by s1 = 1/4, s2 = 11/80, s3 = 1/32 and
the same recursion for n > 4.

THM
OS ’18

• Since AσN
(− 1

2 ) =
(

Γ2( 1
4 )

2π3/2

)N−3

, it remains to evaluate L(fk, k − 1).
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Evaluating L(fk, k − 1)

fk(τ) =
1

4

∑
(n,m)∈Z2

(−1)m(k−1)/2(n− im)k−1qn
2+m2

• The L-value of interest is:

L(fk, k − 1) =
1

4

∑
(n,m)6=(0,0)

(−1)m(k−1)/2 (n− im)k−1

(n2 +m2)k−1

=
1

4

∑
(n,m)6=(0,0)

(−1)m(k−1)/2 1

(n+ im)k−1

=
1

4

{
Gk−1(i), if k ≡ 1 (mod 4),
2Gk−1(2i)−Gk−1(i), if k ≡ 3 (mod 4).

• For n > 4,

(4n2 − 1)(n− 3)G2n = 3

n−2∑
k=2

(2k − 1)(2n− 2k − 1)G2kG2(n−k).

• It remains to evaluate G`(τ) for ` ∈ {4, 6} and τ ∈ {i, 2i}.

G`(τ) =
∑

(n,m)6=(0,0)

1

(n+mτ)`
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All critical L-values of fk

L(f5, 4) =
2π

5
L(f5, 3) =

π2

5
L(f5, 2) =

π3

6
L(f5, 1)

L(f7, 6) =
3π

10
L(f7, 5) =

3π2

40
L(f7, 4) =

π3

80
L(f7, 3) =

π4

640
L(f7, 2)

=
π5

3840
L(f7, 1)

L(f9, 8) =
3π

10
L(f9, 7) =

3π2

35
L(f9, 6) =

4π3

175
L(f9, 5) =

π4

175
L(f9, 4)

=
π5

700
L(f9, 3) =

π6

2400
L(f9, 2) =

π7

5040
L(f9, 1)

EG
Empirically

• By work of Eichler, Shimura and Manin such relations must exist with
algebraic numbers.

• L(f5, 4) = π2

5 L(f5, 2) follows from a result by Fukuhara, Yang (’13).

In principle, such evaluations can be rigorously obtained (Rankin’s
method). Are there implementations?

Q
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Conclusions

• Golyshev and Zagier observed that for

A(n) =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

, f(τ) = η(2τ)4η(4τ)4 =
∑
n>1

αnq
n

the known modular congruences have a continuous analog: weight 4

A(p−1
2 ) ≡ αp (mod p2), A(− 1

2 ) = 16
π2L(f, 2)

• We proved that the same phenomenon holds for:
• all six sporadic sequences of Zagier weight 3

• an infinite family of leading coefficients of Brown’s cellular integrals
odd weight k
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• We proved that the same phenomenon holds for:
• all six sporadic sequences of Zagier weight 3

• an infinite family of leading coefficients of Brown’s cellular integrals
odd weight k

• Proofs are computational and not satisfactorily uniform
Do all of these have the same motivic explanation?

Can Zagier’s motivic approach (relying on Tate conjecture) be worked out explicitly in these cases?

• Further examples exist. What is the natural framework?
Apéry-like sequences, CM modular forms, hypergeometric series, . . .

• How to characterize the analytic interpolations abstractly?
We used suitable binomial sums. But the interpolations are not unique! (Some grow like sin(πx) as x→ i∞.)

• Polynomial analogs?
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• We proved that the same phenomenon holds for:
• all six sporadic sequences of Zagier weight 3

• an infinite family of leading coefficients of Brown’s cellular integrals
odd weight k

For any odd prime p,

Aσ(p−1
2 ) ≡ γ(p) (mod p2), η12(2τ) =

∑
n>1

γ(n)qn ∈ S6(Γ0(4))

THM
McCarthy,

Osburn,
S 2018

• Here, Aσ(n) =
n∑

k1,k2,k3,k4=0
k1+k2=k3+k4

4∏
i=1

(
n

ki

)(
n+ ki
ki

)
.

Question:
Zagier-type interpolation?
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks

D. McCarthy, R. Osburn, A. Straub
Sequences, modular forms and cellular integrals
Mathematical Proceedings of the Cambridge Philosophical Society, 2018

R. Osburn, A. Straub
Interpolated sequences and critical L-values of modular forms
Chapter 14 of the book: Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory
Editors: J. Blümlein, P. Paule and C. Schneider; Springer, 2019, p. 327-349

R. Osburn, A. Straub, W. Zudilin
A modular supercongruence for 6F5: An Apéry-like story
Annales de l’Institut Fourier, Vol. 68, Nr. 5, 2018, p. 1987-2004

D. Zagier
Arithmetic and topology of differential equations
Proceedings of the 2016 ECM, 2017
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VII

Polynomial analogs
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Basic q-analogs

• The natural number n has the q-analog:

[n]q =
qn − 1

q − 1
= 1 + q + . . .+ qn−1

In the limit q → 1 a q-analog reduces to the classical object.

• The q-factorial:

[n]q! = [n]q [n− 1]q · · · [1]q

• The q-binomial coefficient:(
n

k

)
q

=
[n]q!

[k]q! [n− k]q!
=

(
n

n− k

)
q
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[n]q!

[k]q! [n− k]q!
=

(
n

n− k

)
q
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A q-binomial coefficient

(
6

2

)
=

6 · 5
2

= 3 · 5

(
6

2

)
q

=
(1 + q + q2 + q3 + q5)(1 + q + q2 + q3 + q4)

1 + q

= (1− q + q2)︸ ︷︷ ︸
=Φ6(q)

(1 + q + q2)︸ ︷︷ ︸
=[3]q

(1 + q + q2 + q3 + q4)︸ ︷︷ ︸
=[5]q

EG

• The cyclotomic polynomial Φ6(q) becomes 1 for q = 1
and hence invisible in the classical world
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The coefficients of q-binomial coefficients

• Here’s some q-binomials in expanded form:(
6

2

)
q

= q8 + q7 + 2q6 + 2q5 + 3q4 + 2q3 + 2q2 + q + 1(
9

3

)
q

= q18 + q17 + 2q16 + 3q15 + 4q14 + 5q13 + 7q12

+ 7q11 + 8q10 + 8q9 + 8q8 + 7q7 + 7q6 + 5q5

+ 4q4 + 3q3 + 2q2 + q + 1

EG

• The degree of the q-binomial is k(n− k).

• All coefficients are positive!

• In fact, the coefficients are unimodal. Sylvester, 1878
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A few faces of the q-binomial coefficient

The q-binomial coefficient
(
n

k

)
q

• satisfies a q-version of Pascal’s rule,
(
n

k

)
q

=

(
n− 1

k − 1

)
q

+ qk
(
n− 1

k

)
q

,

• counts k-subsets of an n-set weighted by their sum,

• features in a binomial theorem for noncommuting variables,

(x+ y)n =
n∑
k=0

(
n

k

)
q

xkyn−k, if yx = qxy,

• has a q-integral representation analogous to the beta function,

• counts the number of k-dimensional subspaces of Fnq .
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A q-analog of Babbage’s congruence

• Combinatorially, we again obtain: “q-Chu-Vandermonde”(
2n

n

)
q

=

n∑
k=0

(
n

k

)
q

(
n

n− k

)
q

q(n−k)2

≡ qn2
+ 1 = [2]

qn2 (mod Φn(q)2)

(Note that Φn(q) divides
(
n

k

)
q

unless k = 0 or k = n.)

(
an

bn

)
q

≡
(
a

b

)
qn2

(mod Φn(q)2)
THM

Clark
1995

• Note that Φn(1) = 1 if n is not a prime power.
• Similar results by Andrews (1999); e.g.:(

ap

bp

)
q

≡ q(a−b)b(p2)
(
a

b

)
qp

(mod [p]2q)
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A q-analog of Ljunggren’s congruence

• The following answers the question of Andrews to find a q-analog of
Wolstenholme’s congruence.(

an

bn

)
q

≡
(
a

b

)
qn2
− (a− b)b

(
a

b

)
n2 − 1

24
(qn − 1)2 (mod Φn(q)3)

THM
S

2011/18

(
26

13

)
q

= 1 + q169 − 14(q13 − 1)2 + (1 + q + . . .+ q12)3f(q)

where f(q) = 14− 41q + 41q2 − . . .+ q132 ∈ Z[q].

EG
n = 13,
a = 2,
b = 1

• Note that n2−1
24 is an integer if (n, 6) = 1.

• Ljunggren’s classical congruence holds modulo p3+r

with r the p-adic valuation of Jacobsthal ’52

(a− b)ab
(
a

b

)
.
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A q-version of the Apéry numbers

• A symmetric q-analog of the Apéry numbers:

Aq(n) =

n∑
k=0

q(n−k)2

(
n

k

)2

q

(
n+ k

k

)2

q

This is an explicit form of a q-analog of Krattenthaler, Rivoal and Zudilin (2006).

• The first few values are:

A(0) = 1 Aq(0) = 1

A(1) = 5 Aq(1) = 1 + 3q + q2

A(2) = 73 Aq(2) = 1 + 3q + 9q2 + 14q3 + 19q4 + 14q5

+ 9q6 + 3q7 + q8

A(3) = 1445 Aq(3) = 1 + 3q + 9q2 + 22q3 + 43q4 + 76q5

+ 117q6 + . . .+ 3q17 + q18
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q-supercongruences for the Apéry numbers

The q-analog of the Apéry numbers, defined as

Aq(n) =

n∑
k=0

q(n−k)2

(
n

k

)2

q

(
n+ k

k

)2

q

,

satisfies, for any m > 0, Aq(1) = 1 + 3q + q2, A(1) = 5

Aq(mn) ≡ A
qm2 (n)−m

2 − 1

12
(qm−1)2n2A1(n) (mod Φm(q)3).

THM
S

2014/18

• Gorodetsky (2018) recently proved q-congruences implying the
stronger congruences A(prn) ≡ A(pr−1n) modulo p3r.

• q-analog and congruences for Almkvist–Zudilin numbers?
(classical supercongruences still open)
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks
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