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®m\? (n+ k)2 . L
A(n) = ( ) < ) e Apéry numbers and their siblings
0 ® supercongruences

1,5,73, 1445, 33001, 819005, 21460825, . .. ® g-analogs
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Apéry numbers and the irrationality of ((3)

e The Apéry numbers 1,5,73,1445, ...
=2 () (1)
k=0

(n+1)3u,1 = 204+ 1)(A7T02 + 170+ 5)up — n3up_1.

satisfy
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Apéry numbers and the irrationality of ((3)

e The Apéry numbers 1,5,73,1445, ...

-2 () (1)

(n+ 1)3up1 = (2n + 1) (1702 + 17n + 5)up, — nu, 1.

satisfy

THM ((3) = 3> | L is irrational.

Apéry'78 n=1

proof The same recurrence is satisfied by the “near”-integers

n

- £ 1) (£ S sttt

k=0

Then, BE" — ((3). But too fast for ((3) to be rational. O
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Zagier’s search and Apéry-like numbers

e Recurrence for Apéry numbers is the case (a,b,c) = (17,5,1) of

(n+ 1)3upi1 = (2n + 1)(an® + an + b)u, — cn’u, 1.

Q  Are there other tuples (a, b, c) for which the solution defined by

Beukers,

zagier u_1 = 0, ug = 1 is integral?
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Zagier’s search and Apéry-like numbers

e Recurrence for Apéry numbers is the case (a,b,c) = (17,5,1) of

(n+ 1)3upi1 = (2n + 1)(an® + an + b)u, — cn’u, 1.

Q  Are there other tuples (a, b, c) for which the solution defined by

Beukers,

zagier u_1 = 0, ug = 1 is integral?

e Essentially, only 14 tuples (a, b, ¢) found. (Almkvist-Zudilin)
e 4 hypergeometric and 4 Legendrian solutions (with generating functions

1 al—al —Cyuz \?
1Cz ), ———FR (" o ,
z) 1—Cz’t ( 1 lfCaz)

with a = 1 1 11 ang ©, = 24 33,26 24 . 33)

e 6 sporadic solutions

e Similar (and intertwined) story for:
e (n+ 1)Uy = (an?® + an + b)u, — en®up,_y (Beukers, Zagier)
o (n+ 13Uy = (2n+ 1)(an? + an + b)u, — n(en? + d)up—1  (Cooper)
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The six sporadic Apéry-like numbers

(a,b,c) A(n)

(17,5,1) ; <Z>2(nzk>2
(12,4,16) Zk: <Z)2(2:>2
waon | 26 )

(7,3,81) | Y (~1)k3n3k (;{ (n;ﬁ;k)(iﬁ)l

(11,5,125) ;(_1)k(z>3<4n%5k>
s [ ZEO0C)

k,l

Apéry numbers

Domb numbers

Almkvist—Zudilin numbers

Supercongruences for polynomial analogs of the Apéry numbers

Armin Straub

4/17



Modularity of Apéry-like numbers

e The Apéry numbers 1,5,73,1145, ...

am=> (1) ("1

satisfy k=0
0’ (2r)n"(37) _ A(n) ( ' (m)n*?(67) )"
P (m)P(6m) =T \nt?@2n)n'?(37) )
modular form modular function
14 5q 4 132 + 23¢% + O(q%) q —12¢% +664° + O(q*)
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Modularity of Apéry-like numbers

e The Apéry numbers 1,5,73,1145, ...

am=> (1) ("1

satisfy k=0
UHCIUHCI NS T ( n'(r)n**(67) )"
P (r)P(67) o (2t (37) )
modular form modular function
1+ 5q + 132 + 23¢° + O(q%) q—12¢% +66¢% + O(¢*)

FACT Not at all evidently, such a modular parametrization exists for
all known Apéry-like numbers!
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Supercongruences for Apéry numbers

e Chowla, Cowles and Cowles (1980) conjectured that, for p > 5,
Alp) =5 (modp?).
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Supercongruences for Apéry numbers

e Chowla, Cowles and Cowles (1980) conjectured that, for p > 5,
Alp) =5 (modp?).
e Gessel (1982) proved that A(mp) = A(m)  (modp?).
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Supercongruences for Apéry numbers

e Chowla, Cowles and Cowles (1980) conjectured that, for p > 5,
Alp) =5 (modp?).

e Gessel (1982) proved that A(mp) = A(m)  (modp?).
g-l-:M The Apéry numbers satisfy the supercongruence (p=5)
Coster‘
o A(mp") = A(mp™™")  (modp™).
Armin Straub
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Supercongruences for Apéry numbers

e Chowla, Cowles and Cowles (1980) conjectured that, for p > 5,
Alp) =5 (modp?).

e Gessel (1982) proved that A(mp) = A(m)  (modp?).

WV
=

THM The Apéry numbers satisfy the supercongruence (p

(mod p°").

Beukers,
Coster
A(mp") = A(mp" ™)

'85, '88
EG Simple combinatorics proves the congruence
DN AN |
= =141 (modp?).
G262
For p > 5, Wolstenholme's congruence shows that, in fact,

<2]f> —2  (modp?).

Armin Straub
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Supercongruences for Apéry-like numbers

e Conjecturally, supercongruences like

A(mpr) = A(mpril) (modpgr) Robert Osburn Brundaban Sahu
(University of Dublin) (NISER, India)
hold for all Apéry-like numbers. Osburn-Sahu 09

e Current state of affairs for the six sporadic sequences from earlier:

(a,b,c) | A(n)
(17,5,1) | 3, (7 (")° Beukers, Coster '87-'83
(12,4,16) | ¥, (17 (%) Osburn-Sahu-S 16
(10,4,64) | 3, (1) (3 (3=P) Osburn-Sahu '11
(7,3,81) | p(=1)F3" 2 () ("4F) G | open o e
(11,5,125) | 3, (=1)%(2)* (%% Osburn-Sahu-S '16
9.3,-27) | s (0 (D (1) Gorodetsky '18
S peyromial aviog f e Apiy mobr i S
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Non-super congruences are abundant

a(mp”) = a(mp™™")  (modp") (G)

e realizable sequences a(n), i.e., for some map T : X — X,

aln)=#{xr e X : T"x =z} “points of period n”
Everest-van der Poorten—Puri-Ward '02, Arias de Reyna '05
In fact, up to a positivity condition, (G) characterizes realizability.
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Non-super congruences are abundant

a(mp”) = a(mp™™")  (modp") (G)

e realizable sequences a(n), i.e., for some map T : X — X,

aln)=#{xr e X : T"x =z} “points of period n”
Everest-van der Poorten—Puri-Ward '02, Arias de Reyna '05
In fact, up to a positivity condition, (G) characterizes realizability.

e a(n) = trace(M™)

where M is an integer matrix

Janichen '21, Schur '37; also: Arnold, Zarelua
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Non-super congruences are abundant

a(mp”) = a(mp™™")  (modp") (G)

e realizable sequences a(n), i.e., for some map T : X — X,

aln)=#{xr e X : T"x =z} “points of period n”
Everest-van der Poorten—Puri-Ward '02, Arias de Reyna '05

In fact, up to a positivity condition, (G) characterizes realizability.

° a(n) = trace(M") Janichen '21, Schur '37; also: Arnold, Zarelua
where M is an integer matrix

e (G) is equivalent to exp (i a(nn)T”> € Z[[T]).
n=1

This is a natural condition in formal group theory.
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Basic g-analogs

e The natural number n has the g-analog:

_q¢ -1

pa =14+qg+...+¢" !

In the limit ¢ — 1 a g-analog reduces to the classical object.
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Basic g-analogs

e The natural number n has the g-analog:

1
pa =14qg+...+¢" !

In the limit ¢ — 1 a g-analog reduces to the classical object.

e The g-factorial:
(]! = [nly [n—1],---[1],

e The g-binomial coefficient:
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A ¢-binomial coefficient

EG
6 )
-—— " =3.5
(2) ="
<6> _(A4a+ @+ +P) A+ g+ + ¢+
2 q 1+g¢
Supercongruences for polynomial analogs of the Apéry numbers Armin Straub
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A ¢-binomial coefficient

EG
6 6-5

<6> A+ g+ P+ P+ )+ g+ + P+ 4t
q

2 1+g¢
=(1-g¢+)1+q+¢) L+qg++¢*+¢"

-~

=[3l, =[5l,
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A ¢-binomial coefficient

EG
6 6-5

<6> A+ g+ P+ P+ )+ g+ + P+ 4t
q

2 1+g¢
=(1-g¢+)Q+q+¢) L+qg++¢*+¢"
—®0(q) =[], —[5],

e The cyclotomic polynomial ®¢(q) becomes 1 for g =1
and hence invisible in the classical world
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The coefficients of ¢-binomial coefficients

e Here's some ¢-binomials in expanded form:

EG 6
<2> =@ +q +2¢° +2¢° +3¢* +2¢° + 24> + ¢+ 1
q
9
<3> :q18+q17+2q16+3q15+4q14+5q13+7q12
a +7q11+8q10+8q9+8q8+7q7+7q6+5q5
+4¢' +3¢° + 2% + g+ 1

e The degree of the g-binomial is k(n — k).
e All coefficients are positive!

e |n fact, the coefficients are unimodal. Sylvester, 1878
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A few faces of the ¢-binomial coefficient

The g-binomial coefficient (Z)
q

o : : —1 ~1
e satisfies a g-version of Pascal’s rule, (Z) = (n ) +d* (n ) ,
q q q
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A few faces of the ¢-binomial coefficient

The g-binomial coefficient (Z)
q

. . ) -1
e satisfies a g-version of Pascal's rule, (n) = (n ) +qk(
k p k—1 q

e counts k-subsets of an n-set weighted by their sum,

n—l)
ko /g
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A few faces of the ¢-binomial coefficient

The g-binomial coefficient (Z)
q

e satisfies a g-version of Pascal's rule, (Z) = (
q

n—1

k-1

),

e counts k-subsets of an n-set weighted by their sum,
e features in a binomial theorem for noncommuting variables,

n n N )
@+y" =Y (k) aFyr ok, if ya = qay,
q

k=0

k

n—l)
q
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A few faces of the ¢-binomial coefficient

The g-binomial coefficient (Z)
q

e satisfies a g-version of Pascal’s rule, (n) = (n_ 1) +q* (n_ 1) ,
k p k-1 q k p

e counts k-subsets of an n-set weighted by their sum,

e features in a binomial theorem for noncommuting variables,

n

n .

@+yr=>_1{,]) " if ya = qay,
k=0 k q

e has a g-integral representation analogous to the beta function,
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A few faces of the ¢-binomial coefficient

The g-binomial coefficient (Z)
q

s . , -1 , — 1
satisfies a g-version of Pascal's rule, (n) = (n ) +d* (n ) ,
k), \k-1/, ko),

counts k-subsets of an n-set weighted by their sum,

features in a binomial theorem for noncommuting variables,

n

n _ .
@+y" =Y (k) aFyr ok, if ya = qay,
k=0 q

has a g-integral representation analogous to the beta function,

counts the number of k-dimensional subspaces of Fy.
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A g¢-analog of Babbage’s congruence

e Combinatorially, we again obtain: “q-Chu-Vandermonde”

()= () () o
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A g¢-analog of Babbage’s congruence

e Combinatorially, we again obtain: “q-Chu-Vandermonde”
) E0L0 e
= q
<n P k g\ — k q
=¢" +1=2). (mod ®,,(q)?)

(Note that ®,,(¢q) divides (Z) unless k =0or k =n.)

q
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A g¢-analog of Babbage’s congruence

e Combinatorially, we again obtain: “q-Chu-Vandermonde”
) E0L0 e
= q
<n P k g\ — k q
=¢" +1=2). (mod ®,,(q)?)

(Note that ®,,(¢q) divides (Z) unless k =0or k =n.)

THM an a

¢ Note that ®,,(1) = 1 if n is not a prime power.
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A g¢-analog of Babbage’s congruence

e Combinatorially, we again obtain: “q-Chu-Vandermonde”
) E0L0 e
= q
(n P k g\ — k q
=¢" +1=2). (mod ®,,(q)?)

(Note that ®,,(¢q) divides (Z) unless k =0or k =n.)

THM an a

e Note that ®,,(1) = 1 if n is not a prime power.
e Similar results by Andrews (1999); e.g.:

(i) =ae @ () cmoaiy
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A g-analog of Ljunggren’s congruence

e The following answers the question of Andrews to find a ¢g-analog of
Wolstenholme's congruence.

THM  /an . A n? 1 ) )
s — —(a— n_
2011/18 <b”>q = (b> e (a b)b(b) 2 (¢"—=1)° (mod®,(q)°)
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A g-analog of Ljunggren’s congruence

e The following answers the question of Andrews to find a ¢g-analog of
Wolstenholme's congruence.

THM  /an . A n? 1 ) )
s — —(a— n_
2011/18 <b”>q = (b> e (a b)b(b) 2 (¢"—=1)° (mod®,(q)°)

where f(q) =14 — 41q +41¢> — ... + ¢**? € Z]q].
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A g-analog of Ljunggren’s congruence

e The following answers the question of Andrews to find a ¢g-analog of
Wolstenholme's congruence.

:;E/l\:; <ZZ> - (Z> o2 (a— b)b(Z) n22; @D (mod @,()°)

q

EG 26
o <13> =1+¢%-14(¢" - 1)’ + (1 +q+... +¢"*)*f(g)
b=1 q
where f(q) =14 — 41q +41¢> — ... + ¢**? € Z]q].

¢ Note that "2211 is an integer if (n,6) = 1.
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A g-analog of Ljunggren’s congruence

THM
s

2 _
<an> _ <a> (a- b)b(a) n?—1
2011/18 m), b) g2

n_12
y) o @ -1

e The following answers the question of Andrews to find a ¢g-analog of
Wolstenholme's congruence.

(mod @n(q)?’)

(@3 =1 +0+q+...+¢"*f(q)

n2—-1
e Note that 2

where f(q) =14 — 41q +41¢> — ... + ¢**? € Z]q].

is an integer if (n,6) = 1.

e Ljunggren’s classical congruence holds modulo p3*”
with r the p-adic valuation of

Jacobsthal '52
a
—b)adb .
(@ va )

Armin Straub
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A g-version of the Apéry numbers

e A symmetric g-analog of the Apéry numbers:

Ag(n) = Z ¢k’ <Z> ? (n ;: k) 2

k=0 q q

n

This is an explicit form of a g-analog of Krattenthaler, Rivoal and Zudilin (2006).

Supercongruences for polynomial analogs of the Apéry numbers Armin Straub




A g-version of the Apéry numbers

e A symmetric g-analog of the Apéry numbers:
n 2 2
o (nfk)Q n n + ]C
o= S ()1

k=0 q q

This is an explicit form of a g-analog of Krattenthaler, Rivoal and Zudilin (2006).

e The first few values are:

A(0) =1 A (0) =1
A =5 A1) =1+3¢+¢°
A(2) =73 Ag(2) =1+ 3q+9¢* + 14¢° + 19¢* + 14¢°

+ 9q6 + 3q7 + q8
A(3) = 1445 Ay(3) =1+ 3¢+ 9¢* + 22¢° + 43¢* + 76¢°
+117¢5 + ... 4+ 3¢" + ¢'®
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g-supercongruences for the Apéry numbers

TI-SIM The g-analog of the Apéry numbers, defined as

2014/18

n 2 2
. (n—k)2 n n + k’
Al = a7 (1) (" 7F) |
k=0 q q
satisfies, for any m > 0, A (1) =1+3¢+¢% A(1)=5
m? -1 m 2 2 3
Ag(mn) = A 2(n)— 5 (¢"—1)"n*Ai(n) (mod ®,,(q)°).
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g-supercongruences for the Apéry numbers

TI-SIM The g-analog of the Apéry numbers, defined as

2014/18

n 2 2
. (n—k)2 n n + k’
Al = a7 (1) (" 7F) |
k=0 q q
satisfies, for any m > 0, A (1) =1+3¢+¢% A(1)=5
m? -1 m 2 2 3
Ag(mn) = A 2(n)— 5 (¢"—1)"n*Ai(n) (mod ®,,(q)°).

e Gorodetsky (2018) recently proved g-congruences implying the
stronger congruences A(p"n) = A(p"~'n) modulo p*".
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g-supercongruences for the Apéry numbers

TI-SIM The g-analog of the Apéry numbers, defined as

2014/18 n ) 9
2 (N n + k‘
Ag(n) => ¢ H :
k k
k=0 q q
satisfies, for any m > 0, A (1) =1+3¢+¢% A(1)=5
m2—1

(qm—1)2n2A1 (n) (mod®,, (q)?’).

gm*\"MT

e Gorodetsky (2018) recently proved g-congruences implying the
stronger congruences A(p"n) = A(p"~'n) modulo p*".

e ¢-analog and congruences for Almkvist—Zudilin numbers?

(classical supercongruences still open)
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THANK YOQOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks
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