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Core partitions

e The integer partition (5,3,3,1) has Young diagram:
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e The integer partition (5,3,3,1) has Young diagram:

CE 1]

e To each cell u in the diagram is assigned its hook.
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Core partitions

e The integer partition (5,3,3,1) has Young diagram:

2] 1]

’»—lhucnoo

e To each cell u in the diagram is assigned its hook.

e The hook length of u is the number of cells in its hook.

Core partitions into distinct parts and an analog of Euler’s theorem

Armin Straub ~




Core partitions

e The integer partition (5,3,3,1) has Young diagram:

2] 1]

’H.&cnoo

e To each cell u in the diagram is assigned its hook.
e The hook length of u is the number of cells in its hook.

e A partition is t-core if no cell has hook length t.
For instance, the above partition is 7-core.
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Core partitions

e The integer partition (5,3,3,1) has Young diagram:

2] 1]

’H.&cnoo

e To each cell u in the diagram is assigned its hook.

e The hook length of u is the number of cells in its hook.

e A partition is t-core if no cell has hook length t.
For instance, the above partition is 7-core.

e A partition is (s, t)-core if it is both s-core and t-core.
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Core partitions

e The integer partition (5,3,3,1) has Young diagram:

2] 1]

’H.&cnoo

e To each cell u in the diagram is assigned its hook.
e The hook length of u is the number of cells in its hook.

e A partition is t-core if no cell has hook length t.
For instance, the above partition is 7-core.

e A partition is (s, t)-core if it is both s-core and t-core.

LEM If a partition is t-core, then it is also rt-core for r =1,2,3...
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The number of core partitions

e Using the theory of modular forms, Granville and Ono (1996) showed:

(The case t = p of this completed the classification of simple groups with defect zero Brauer p-blocks.)

THM For any n > 0 there exists a t-core partition of n whenever ¢t > 4.
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The number of core partitions

e Using the theory of modular forms, Granville and Ono (1996) showed:

(The case t = p of this completed the classification of simple groups with defect zero Brauer p-blocks.)

THM For any n > 0 there exists a t-core partition of n whenever ¢t > 4.

e If ¢;(n) is the number of ¢-core partitions of n, then
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The number of core partitions

e Using the theory of modular forms, Granville and Ono (1996) showed:

(The case t = p of this completed the classification of simple groups with defect zero Brauer p-blocks.)

THM For any n > 0 there exists a t-core partition of n whenever ¢t > 4.

e If ¢;(n) is the number of ¢-core partitions of n, then
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Q Can we give a combinatorial proof of the Granville—-Ono result?
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The number of core partitions

e Using the theory of modular forms, Granville and Ono (1996) showed:

(The case t = p of this completed the classification of simple groups with defect zero Brauer p-blocks.)

THM For any n > 0 there exists a t-core partition of n whenever ¢t > 4.

e If ¢;(n) is the number of ¢-core partitions of n, then

o e e}

1—qm)
St - T 420
n=0 n=1 -4
o0 oo 1 oo
> eam)g® => "N N )" =1+q+2¢° +2¢" + " +20° + ¢+
n=0 n=0 n=0

Q Can we give a combinatorial proof of the Granville—-Ono result?

COR The total number of t-core partitions is infinite.

Though this is probably the most complicated way possible to see that. ..
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Counting core partitions

THM The number of (s, t)-core partitions is finite if and only if s and

Anderson

2002t are coprime.
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Counting core partitions

THM The number of (s, t)-core partitions is finite if and only if s and

Anderson

2002t are coprime. In that case, this number is

1 s+t
s+t\ s /)’
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Counting core partitions

THM The number of (s, t)-core partitions is finite if and only if s and

Anderson

2002t are coprime. In that case, this number is
1 [s+1t
s+t\ s )

e Olsson and Stanton (2007): the largest size of such partitions is 55 (s> —1)(t* — 1).
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Counting core partitions

THM The number of (s, t)-core partitions is finite if and only if s and

Anderson

2002t are coprime. In that case, this number is

1 s+t
s+t\ s /)’

e Olsson and Stanton (2007): the largest size of such partitions is 55 (s> —1)(t* — 1).

e Note that the number of (s, s + 1)-core partitions is the Catalan number

oo (2s)_ 1 (2541
T s+1\s ) 2s+1 s ’
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Counting core partitions

THM The number of (s, t)-core partitions is finite if and only if s and

Anderson

2002t are coprime. In that case, this number is
1 [(s+1
s+t\ s )

e Olsson and Stanton (2007): the largest size of such partitions is 55 (s> —1)(t* — 1).

® Note that the number of (s, s 4 1)-core partitions is the Catalan number

oo (2s)_ 1 (2541
T s+1\s ) 2s+1 s ’

® Ford, Mai and Sze (2009) show that the number of self-conjugate (s, t)-core

partitions is
Ls/2] + [t/2]
ls/2] ‘
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Core partitions into distinct parts

e Amdeberhan raises the interesting problem of counting the number of
special partitions which are t-core for certain values of ¢.

CONJ The number of (s, s+ 1)-core partitions into distinct parts equals
the Fibonacci number Fs .
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Core partitions into distinct parts

e Amdeberhan raises the interesting problem of counting the number of
special partitions which are t-core for certain values of ¢.

CONJ The number of (s, s+ 1)-core partitions into distinct parts equals
the Fibonacci number Fs .

e He further conjectured that the largest possible size of an (s, s + 1)-core
partition into distinct parts is |s(s+ 1)/6], and that there is a unique such
largest partition unless s = 1 modulo 3, in which case there are two
partitions of maximum size.

e Amdeberhan also conjectured that the total size of these partitions is

Z F,F;Fy.

i+j+k=s+1
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Core partitions into distinct parts

e Amdeberhan raises the interesting problem of counting the number of
special partitions which are t-core for certain values of ¢.

CONJ The number of (s, s+ 1)-core partitions into distinct parts equals
the Fibonacci number Fs .

e He further conjectured that the largest possible size of an (s, s + 1)-core
partition into distinct parts is |s(s+ 1)/6], and that there is a unique such
largest partition unless s = 1 modulo 3, in which case there are two
partitions of maximum size.

e Amdeberhan also conjectured that the total size of these partitions is

Z F,F;Fy.

i+j+k=s+1
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A two-parameter generalization

THM | et Ny(s) be the number of (s,ds — 1)-core partitions into dis-

tinct parts. Then, Ng(1) =1, Ng4(2) =d and
Na(s) = Ng(s — 1) + dNg(s — 2).

e The case d = 1 settles Amdeberhan's conjecture.
e This special case was independently also proved by Xiong, who
further shows the other claims by Amdeberhan.
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A two-parameter generalization

THM | et Ny(s) be the number of (s,ds — 1)-core partitions into dis-

tinct parts. Then, Ng(1) =1, Ng4(2) =d and
Na(s) = Ng(s — 1) + dNg(s — 2).

e The case d = 1 settles Amdeberhan's conjecture.
e This special case was independently also proved by Xiong, who
further shows the other claims by Amdeberhan.

EG The first few generalized Fibonacci polynomials Ny(s) are
1, d, 2d, d(d+2), d(3d+2), d(d*+5d+2),...

For d = 1, we recover the usual Fibonacci numbers.
For d = 2, we find Ny(s) = 2571,

e Nice proof (and more!) via abaci structures by Nath and Sellers (2016).
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The perimeter of a partition

DEF The perimeter of a partition is the maximum hook length in .

EG

The partition | ‘ has perimeter 7.
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EG
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The perimeter of a partition

DEF The perimeter of a partition is the maximum hook length in .

EG
The partition | | has perimeter 7.

e Introduced (up to a shift by 1) by Corteel and Lovejoy (2004) in their
study of overpartitions.

e The perimeter is the largest part plus the number of parts (minus 1).

e The rank is the largest part minus the number of parts.
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Euler’'s theorem and a simple analog

THM number of partitions of size n into distinct parts
Fuler = number of partitions of size n into odd parts
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Euler’'s theorem and a simple analog

THM

Euler

THM
S 2016

number of partitions of size n into distinct parts
number of partitions of size n into odd parts

number of partitions of perimeter n into distinct parts
number of partitions of perimeter n into odd parts

Though natural and easily proved, we have been unable to find this result in the literature.
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Euler’'s theorem and a simple analog

THM number of partitions of size n into distinct parts
Fuler = number of partitions of size n into odd parts

THM number of partitions of perimeter n into distinct parts
S 2016 o . .
= number of partitions of perimeter n into odd parts

Though natural and easily proved, we have been unable to find this result in the literature.

EG Partitions into distinct parts with perimeter 5:
LITTT] H:I_U [TTT1]
LIT]

Partitions into odd parts with perimeter 5:

LITTT] [ []
[]
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Euler’'s theorem and a simple analog

THM number of partitions of size n into distinct parts
Fuler = number of partitions of size n into odd parts

THM number of partitions of perimeter n into distinct parts
s 2016 = number of partitions of perimeter n into odd parts
= F, (Fibonacci)

Though natural and easily proved, we have been unable to find this result in the literature.

EG Partitions into distinct parts with perimeter 5:
LITTT] H:I_U [TTT1]
LIT]

Partitions into odd parts with perimeter 5:

LITTT] [ []
[]
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Refinements of Euler’s theorem

e Many refinements of Euler's theorem are known.

EG number of partitions of size n into distinct parts
Fine with maximum part M

= number of partitions of size n into odd parts
such that the maximum part plus twice the number of parts is 2M +1
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Refinements of Euler’s theorem

e Many refinements of Euler's theorem are known.

EG number of partitions of size n into distinct parts
Fine with maximum part M

= number of partitions of size n into odd parts
such that the maximum part plus twice the number of parts is 2M +1

Q Do similarly interesting refinements exist for partitions into dis-
tinct (respectively odd) parts with perimeter M?
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Refinements of Euler’s theorem

e Many refinements of Euler's theorem are known.

EG number of partitions of size n into distinct parts
Fine with maximum part M

= number of partitions of size n into odd parts
such that the maximum part plus twice the number of parts is 2M +1

Q Do similarly interesting refinements exist for partitions into dis-
tinct (respectively odd) parts with perimeter M?

e Fu and Tang (2016) indeed prove some such refinements.

EG number of partitions of perimeter n into distinct parts
ol with maximum part M

2016
= number of partitions of perimeter n into odd parts
such that the maximum part plus twice the number of parts is 2M +1
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Refinements of Euler’s theorem

e Many refinements of Euler's theorem are known.
EG number of partitions of size n into distinct parts

Fi . .
e with maximum part M

= number of partitions of size n into odd parts
such that the maximum part plus twice the number of parts is 2M +1

Q Do similarly interesting refinements exist for partitions into dis-
tinct (respectively odd) parts with perimeter M?

e Fu and Tang (2016) indeed prove some such refinements.

EG number of partitions of perimeter n into distinct parts
ol with maximum part M

2016
= number of partitions of perimeter n into odd parts
such that the maximum part plus twice the number of parts is 2M +1

Q Just coincidence? What about other partition theorems?
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Partitions of bounded perimeter

e The following very simple observation connects core partitions with
partitions of bounded perimeter.

LEM A partition into distinct parts is (s, s + 1)-core if and only if it
has perimeter strictly less than s.

Core partitions into distinct parts and an analog of Euler’s theorem Armin Straub



Partitions of bounded perimeter

e The following very simple observation connects core partitions with
partitions of bounded perimeter.

LEM A partition into distinct parts is (s, s + 1)-core if and only if it
has perimeter strictly less than s.

proof Let A\ be a partition into distinct parts.
e Assume A has a cell u with hook length ¢ > s.

e Since A has distinct parts, the cell to the right of u has
hook length t — 1 or t — 2.

e It follows that A has a hook of length s or s + 1.

OJ
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Partitions of bounded perimeter

e The following very simple observation connects core partitions with
partitions of bounded perimeter.

LEM A partition into distinct parts is (s, s + 1)-core if and only if it
has perimeter strictly less than s.

proof Let A\ be a partition into distinct parts.
e Assume A has a cell u with hook length ¢ > s.

e Since A has distinct parts, the cell to the right of u has
hook length t — 1 or t — 2.

e It follows that A has a hook of length s or s + 1.
Ol

COR An (s,ds — 1)-core partition into distinct parts has perimeter at
most ds — 2.
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Summary

THM The number of (s, t)-core partitions is finite if and only if s and

Anderson

2002t are coprime. In that case, this number is
1 [s+1t
s+t\ s )

THMS | et Ny4(s) be the number of (s,ds — 1)-core partitions into dis-
tinct parts. Then, Ng(1) =1, Ng(2) =d and

Nd(S) = Nd(s = 1) + de(S = 2).

e In particular, there are F; many (s — 1, s)-core partitions into distinct parts,
e and 2°~! many (s,2s — 1)-core partitions into distinct parts.

Q  What is the number of (s,t)-core partitions into distinct parts
in general?
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Enumerating (s, ?)-core partitions into distinct parts

Q  What is the number of (s,t)-core partitions into distinct parts?

s\t |11 213|456 7 8 9 |10 11 | 12
1 11|11 ]1]1 1 1 1 1 1 1

2 |1joo| 2 |c0| 3 |0]| 4 00 5 |oo| 6 00
3|12 ]oc0| 3|4 |c0]| b5 6 oo | 7 8 o0
4 |[1]oo| 3 |o0]| b |oo]| 8 oco | 11 |oo | 15 | @
5 |1 3|4 |5 |occ0| 816 | 18| 16 || 21 | 38
6 |[1]|ooc|oco|oo| 8 |oco| 13 | 00| 00 |00]| 32 | o0
7 111458 |16[13] co | 21 | 64 |50 64 | 114
8 |[1]oo| 6 |oc0|18|0c0| 21 | c0o | 34 |00 | 101 | o0
9 |1]| 5 |oc|11]16]0c0| 64 | 34 | oo | B5|266 |
10 |1|oo| 7 |oco|oo|oo| 50 | co | 85 oo | 89 | o0
11 1] 6 | 8 |15]21 (32| 64 | 101|256 |89 | oo | 144
12 |1 |oo |00 |00 |38 oo |114| co | o0 |00 | 144 | o0
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Enumerating (s, ?)-core partitions into distinct parts

Q  What is the number of (s,t)-core partitions into distinct parts?

s\t |11 213|456 7 8 9 |10 11 | 12
1 11|11 ]1]1 1 1 1 1 1 1

2 |1joo| 2 || 3 |0]| 4 00 5 |oo| 6 00
31| 2 oco0| 3|4 |c0]| b5 6 oo | 7 8 o0
4 |[1]oco| 3 |o0| b || 8 oco | 11 |oo | 15 | @
5 |1 3|4 |5 |occ| 816 | 18 | 16 || 21 | 38
6 |[1]|ooc|oco|oo| 8 |oco| 13 | c0o | 00 |00]| 32 | o0
7 1114581613 co | 21 | 64 |50 64 | 114
8 |[1]oo| 6 |oc0|18|0c0| 21 | c0o | 34 |00 | 101 | o0
9 |15 |oc|11]16]0c0| 64 | 34 | oo | 55| 266 | o
10 |1|oo| 7 |oco|oo|oo| 50 | co | 85 oo | 89 | o0
11 1] 6 | 8 1521 (32| 64 | 101|256 |89 | oo | 144
12 |1 |oo |00 |00 |38 oo |114| co | o0 |00 | 144 | o0

Core partitions into distinct parts and an analog of Euler’s theorem Armin Straub



Enumerating (s, ?)-core partitions into distinct parts

Q  What is the number of (s,t)-core partitions into distinct parts?

s\t |11 213|456 7 8 9 |10 11 | 12
1 (1,111 11 1 1 1 1 1 1

2 |1joo| 2 |o0| 3 |0]| 4 00 5 |oo| 6 00
31| 2 oc0| 3|4 |0c0]| b5 6 oo | 7 8 o0
4 |[1]oo| 3 |o0| b |oo]| 8 oco | 11 |oo | 15 | @
5 |1 3|4 |5 |occ| 816 | 18 | 16 || 21 | 38
6 |[1l]|ooc|oco|oo| 8 |oco| 13 | c0o | 00 |00]| 32 | o0
7 1114581613 co | 21 | 64 |50 64 | 114
8 |[1]oo| 6 |oc0|18|0c0| 21 | c0o | 34 |00 | 101 | o0
9 |15 |oc|11]16]0c0| 64 | 34 | oo | 55| 266 | o
10 |1|oo| 7 |oco|oo|oo| 50 | co | 85 oo | 89 | o0
11 1] 6 | 8 1521 (32| 64 | 101|256 |89 | oo | 144
12 |1 |oo |00 |00 |38 oo |114| co | o0 |00 | 144 | o0
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Enumerating (s, ?)-core partitions into distinct parts

Q  What is the number of (s,t)-core partitions into distinct parts?

s\t |11 213|456 7 8 9 |10 11 | 12
11111 ]1]1 1 1 1 1 1 1

2 |1joo| 2 || 3 |0]| 4 00 5 |oo| 6 00
31| 2 ]oc0| 3|4 |0c0]| b5 6 oo | 7 8 o0
4 |[1]oco| 3 |o0| b || 8 oco | 11 |oo | 15 | @
5 |1 3|4 |5 |occ| 816 | 18 | 16 || 21 | 38
6 |[1]|ooc|oco|oo| 8 |oco| 13 | c0o | 00 |00]| 32 | o0
7 1114 |58 |16|13] oco | 21 | 64 |50 64 | 114
8 |[1]oo| 6 |oc0|18|0c0| 21 | c0o | 34 |00 | 101 | o0
9 |15 |oc|11]16]0c0| 64 | 34 | oo | 55| 266 |
10 |1|oo| 7 |oco|oo|oo| 50 | co | 85 oo | 89 | o0
11 1] 6 | 8 1521 (32| 64 | 101|256 |89 | oo | 144
12 |1 |oo |00 |00 |38 oo |114| co | o0 |00 | 144 | o0
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Enumerating (s, ?)-core partitions into distinct parts

Q  What is the number of (s,t)-core partitions into distinct parts?

s\t |11 213|456 7 8 9 |10 11 12
1 |1]1 1 111 1 1 1 1 1 1 1
2 |1|loco| 2 |o0| 3 |c0| 4 00 5 |oco| 6 00
31112 |0 3|4 |c0]| 5 6 oo | 7| 8 00
4 |1]oo| 3 |o0]| 5 |oco| 8 oo | 11 |oo| 15 | o0
5 |1 3|4 |5 |occ| 816 | 18 | 16 || 21 | 38
6 |[1|oo|loo|oo| 8 |oco| 13 | 0o | 0o |oo]| 32 | @
7 1114 El @ [1al12a ~n T 91 4 1501 64 [ 114
CONJ If 5 is odd, there are 2°~! many (s,s + 2)-core }4 | 0o | 101 | oo
partitions into distinct parts. o 1551256 | oo
Yan, Qin, Jin, Zhou (2016) have very recently proven this 5 oo | 89 o0

conjecture by analyzing order ideals in an associated poset 56 | 89 | oo | 144
introduced by Anderson. 144 | o
Much simplified by Zaleski, Zeilberger (2016).

5
8
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Enumerating (s, ?)-core partitions into distinct parts

Q  What is the number of (s,t)-core partitions into distinct parts?

s\t |11 213|456 7 8 9 |10 11 12
1 |1]1 1 11 1 1 1 1 1 1 1
2 |1|oco| 2 |c0| 3 |o0| 4 00 5 |oco| 6 00
31112 |0 3|4 |c0]| 5 6 oo | 7| 8 00
4 |1]oo| 3 |o0]| 5 |oco| 8 oo | 11 |oo| 15 | o0
5 |1 3|4 |5 |occ| 816 | 18 | 16 |0 | 21 | 38
6 |[1|oo|loo|oo| 8 |oco| 13 | 0o | 0o |oo]| 32 | @
7 1114 El @ [1al12a ~n T 91 4 150 64 [ 114
CONJ If 5 is odd, there are 2°! many (s,s + 2)-core }4 | oo | 101 | oo
partitions into distinct parts. o 1551256 | oo
Yan, Qin, Jin, Zhou (2016) have very recently proven this 5 oo | 89 o0

conjecture by analyzing order ideals in an associated poset 56 | 89 | oo | 144
introduced by Anderson. 144 | o
Much simplified by Zaleski, Zeilberger (2016).

5
8
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(s,s + 3)-core partitions into distinct parts

THM 25~1 many (s, s + 2)-core partitions into distinct parts (s odd).

Q How many (s, s+ 3)-core partitions into distinct parts?

® 1,3,00,8,18,00,50,101, 00, 291, 557, o0, 1642, 3048, o0, 9116, 16607, . . .
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(s,s + 3)-core partitions into distinct parts

THM 25~1 many (s, s + 2)-core partitions into distinct parts (s odd).
® The largest size of (2n — 1,2n + 1)-core partitions into distinct parts is

1 2
ﬂn(n —1)(5n + 6).

Now, also proven by Yan, Qin, Jin, Zhou (2016) and Zaleski, Zeilberger (2016).

Q How many (s, s+ 3)-core partitions into distinct parts?

® 1,3,00,8,18,00,50,101, 00, 291, 557, o0, 1642, 3048, o0, 9116, 16607, . . .
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(s,s + 3)-core partitions into distinct parts

THM 25— many (s, s+ 2)-core partitions into distinct parts (s odd).

® The largest size of (2n — 1,2n + 1)-core partitions into distinct parts is

1 2
ﬂn(n —1)(5n + 6).

Now, also proven by Yan, Qin, Jin, Zhou (2016) and Zaleski, Zeilberger (2016).

Q How many (s, s+ 3)-core partitions into distinct parts?

® 1,3,00,8,18,00,50,101, 00, 291, 557, o0, 1642, 3048, o0, 9116, 16607, . . .

® The largest size of (3n —2,3n + 1)-core partitions into distinct parts appears to be

1 2
— -1 10).
24n(n )(9n + 10)
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(s,s + 3)-core partitions into distinct parts

THM 25— many (s, s+ 2)-core partitions into distinct parts (s odd).

® The largest size of (2n — 1,2n + 1)-core partitions into distinct parts is

1 2
ﬂn(n —1)(5n + 6).

Now, also proven by Yan, Qin, Jin, Zhou (2016) and Zaleski, Zeilberger (2016).

Q How many (s, s+ 3)-core partitions into distinct parts?

® 1,3,00,8,18,00,50,101, 00, 291, 557, o0, 1642, 3048, o0, 9116, 16607, . . .

® The largest size of (3n —2,3n + 1)-core partitions into distinct parts appears to be

1 2
— -1 10).
24n(n )(9n + 10)

e The largest size of (3n — 1, 3n 4 2)-core partitions into distinct parts appears to be

21—4n(9n3 +38n° + 39n — 14).

Core partitions into distinct parts and an analog of Euler’s theorem Armin Straub
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The size of a random core partition

,E,dEoE. Xs¢ @ size of a (s,t)-core partition

)
variables

X;t) . size of a (s, t)-core partition into distinct parts
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The size of a random core partition

,E,dE;. Xst : size of a (s,t)-core partition
variables (d)
Xg{ + sizeof a (s,t)-core partition into distinct parts
EG E(X ) _ (5 — 1)(t B 1)(5 +t+ 1) conjectured by Armstrong
st) — 24 first proved by Johnson
For comparison, largest size is i(s2 —1)(#2 —1). (Olsson and Stanton, 2007)
EG 1
d \_ N jectured by Amdeberh
POGa) =g D RER ol s
itj+k=s+
1
= —((6s —6)sFsy1 —6(s+ 1)F,
50F, 41 (( ) s+1 ( ) S)
EG 1
E(Xs(f?+2) = @ ((S — 1)(582 + 175+ 16)) Zaleski-Zeilberger
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The size of a random core partition

,E,dEoFm X5t @ size of a (s,t)-core partition

)
variables

Xéf? . size of a (s, t)-core partition into distinct parts

e Zeilberger (2015): explicit moments for X ;

o Zaleski (2016): explicit moments for X%, |

e Zaleski-Zeilberger (2016): explicit moments for Xé(,fis)w

g(BNJ Centralizing and standardizing, the distribution of X, as s, — oo
eilberger . . o
with s — ¢ fixed agrees with the one of

1 X A2+ B2 .
2 Z —z Ay, B, independent, N(0,1).
n=1
B The limiting distribution of Xif?H is normal.

Q. The limiting distribution of Xéfis)ﬁ is not normal. What is it?

Zeilberger
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Enumerating (s, ?)-core partitions into odd parts

Q  What is the number of (s, t)-core partitions into odd parts?

s\t|1]2]3]4|5]|6]|7 8 9 10 11 12
1 j1j1{1|1|1|1]1 1 1 1 1 1
2 (11212112 (2]2]|2 2 2 2 2 2
3 |1[2|oc0| 4] 4 |0c0]| 6 6 (%) 8 8 00
4 1124 |oc0| 7|69 ] o0 | 11 ] 10 13 00
5 1124 |7 |oo|17|12] 17 | 25 | o0 41 31
6 [1]2|o0| 6 |17]0c0|31| 21 | co | 34 62 o0
7112|169 [12[31|cc| 8 | 43 | 78 87 97
8 1126 |oo|17]21 |80 | oo |152| 78 | 124 %)
9 |1]12|o00|11|25| 00|43 |152| oo | 404 | 166 o0
10 {1 2] 8 |10 o0 |34 |78 78 |404| oo | 790 | 308
11 |12 8 134162 |87|124|166 | 790 | oo | 2140
12 |1 |20 |00 |31 ]oc0|97| co | oo | 308 |2140 | oo
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Enumerating (s, ?)-core partitions into odd parts

Q  What is the number of (s, t)-core partitions into odd parts?

s\t |1|2]3 |4 5|6 |7 8 9 10 11 12
1 11|11 |1|1]1 1 1 1 1 1
2 (1121212 (2]2]|2 2 2 2 2 2
3 |1(2|oc0| 4] 4 |0c0]| 6 6 (%) 8 8 00
4 1124 |oc0o| 7|69 ] o0 | 11 ] 10 13 00
5 1124 | 7 oo |17|12] 17 | 25 | o0 41 31
6 [1]2|o0| 6 |17]0c0|31| 21 | co | 34 62 o0
7 1112|169 1231 |cc| 8 | 43 | 78 87 97
8 1126 |oo|17]21 |80 | oo |152| 78 | 124 %)
9 |1]2|o00|11|25| 00|43 |152| oo | 404 | 166 o0
10 [12] 8 |10 o0 |34 |78 78 | 404 | oo | 790 | 308
11 |12 8 134162 |87|124|166 | 790 | oo | 2140
12 |1 |20 |00 |31 ]oc0|97| co | oo | 308 |2140 | oo
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THANK YOQOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks

Tewodros Amdeberhan
Theorems, problems and conjectures
Preprint, 2015. arXiv:1207.4045v6

Armin Straub
Core partitions into distinct parts and an analog of Euler’s theorem
European Journal of Combinatorics, Vol. 57, 2016, p. 40-49

Huan Xiong
Core partitions with distinct parts
Preprint, 2015. arXiv:1508.07918
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