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The wonderful world of A = B
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The wonderful world of A = B
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Apéry'78 Z < ) <n + k)
satisfies the difference equation

(n+1)3u,1 = (2n 4+ 1)(AT02 + 170 + 5)up — n3up_1.
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The wonderful world of A = B

- EE ) -Se G 0)

e < n+ k> S )
=20 () BF Zrme
satisfies the difference equation
(n+1)3u,1 = (2n 4+ 1)(AT02 + 170 + 5)up — n3up_1.
EG

z"; < > (n + k) (1 —2k(2Hy, — Hpip — Ho)) =1

Scott Ahlgren, Shalosh B. Ekhad, Ken Ono, Doron Zeilberger

A binomial coefficient identity associated to a conjecture of Beukers
Electronic Journal of Combinatorics, Vol. 5, 1998, #R10
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The wonderful world of A =B

EG

Z ( > <n+k> (1= 26(2Hy — Hyox — Hoy)) = 1
e Below, p > 2 is a prime and n = (p — 1)/2.
% Y () (Z)S (" k)3(1 ~ 3K(2Hy — Hyok — o))
-5

Congruences connecting modular forms and truncated hypergeometric series Armin Straub




The wonderful world of A =B

EG

again 2 ( > (” + k) (1 = 2k(2Hy, — Hyypi — Hog)) = 1

e Below, p > 2isaprimeand n = (p—1)/2.
EG

o5z i (—1)k <Z>3 (” Z k)3(1 — 3k(2Hy — Hysk — Hoy))

k=0

S
8 501 = £ TE)

e We have no general algorithmic approach to such congruences.
e Instead, we had to find suitable intermediate identities.
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Apéry numbers and the irrationality of ((3)

e The Apéry numbers 1,5,73,1445, ...

-2 0) (1)

(n+1)2A(n+1) = (2n + 1)(17n% + 17n + 5)A(n) — n3A(n — 1).

satisfy
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Apéry numbers and the irrationality of ((3)

e The Apéry numbers 1,5,73,1445, ...

-2 0) (1)

satisfy

(n+1)2A(n+1) = (2n + 1)(17n% + 17n + 5)A(n) — n3A(n — 1).

THM ((3) = 3™ | 2 is irrational.

Apéry '78 n=1

proof The same recurrence is satisfied by the “near”—integers

I GIGUNHETS P =]

m

Then, % — ((3). But too fast for ((3) to be rational. O
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Hypergeometric series

EG Trivially, the Apéry numbers have the representation

-2 () ()

_ s -n,—n,n+1,n+1 1)
1,1,1

e Here, 4F3 is a hypergeometric series:

Aty ..., Gp
pFQ<b b
1; -+, Og

_ v (e (ap)r 2
> - kZO (b1)r - (b !’
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Hypergeometric series

EG Trivially, the Apéry numbers have the representation

-2 () ()

_ s -n,—n,n+1,n+1 1)
1,1,1

e Here, 4F3 is a hypergeometric series:

ai, ..., ap _ = (a1)k - - (ap)k 2"
qu< Z) =, (b1)g - (b 1!

b, ..., by P

e Similary, we have the truncated hypergeometric series

at, ..., Gp
pF‘I(b b
1; +-+5 Og

n

M
_ o (@) (ap)k 2"
Z>M - ,CZ_O (01)k -~ (bg)x n!
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A first connection to modular forms

e The Apéry numbers A(n) satisfy 1,5,73,1145, . ..
0’ (2r)n"(37) _ S An) < 0" ()" (67) )"
> (r)(67) & n'2(27)n'"2(37) )
modular form modular function
1+ 5q + 13¢% + 23¢% + O(¢%) q —12¢2% 4+ 664> + O(q*) q = 2™
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A first connection to modular forms

e The Apéry numbers A(n) satisfy 1,5,73,1145, . ..
0’ (2r)n"(37) _ S An) < 0" ()" (67) )"
P 2 g2enneen)
modular form modular function
14 5q + 13¢% + 23¢°% + O(q*) q— 12¢% + 6643 + O(q?) q = e2miT

EG  As a consequence, with z = v/1 — 34z + 22,

Z A(n)z"

n=0

1 11
I et Sl 3F2<2>272
44/2(1 +  + 2)3/2

_ 1024«
1—z+2)*)"

)

EG For contrast, the Apéry numbers are the diagonal coefficients of
S 2014

1
(1—m21 —22)(1 — 23 — w4) — T1T2T3T4
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A second connection to modular forms

THM For primes p > 2, the Apéry numbers satisfy
Ahlgren—
Ono

4 (fjl) =a(p)  (mody?)

where a(n) are the Fourier coefficients of the Hecke eigenform

n(2r)*nr)* = Y a(n)q"
n=1

of weight 4 for the modular group I'y(8).

e conjectured by Beukers '87, and proved modulo p

e similar congruences modulo p for other Apéry-like numbers
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The “super” in these congruences

Fourier coefficients a(p)

Apéry sequence A(n)
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The “super” in these congruences

Fourier coefficients a(p)

i
point counts on modular curves modulo p
i
character sums
i
Gaussian hypergeometric series
i
harmonic sums
i
truncated hypergeometric series
i

Apéry sequence A(n)
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The “super” in these congruences

Fourier coefficients a(p)

I

point counts on modular curves modulo p

i equalities
character sums

I

Gaussian hypergeometric series

I

harmonic sums
n “easy” mod p

truncated hypergeometric series

i
Apéry sequence A(n)
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Kilbourn’s extension of the Ahlgren—Ono supercongruence

THM 1111
o sF (2202 211) =a(p) (modp®),
L1117/,

for primes p > 2. Again, a(n) are the Fourier coefficients of

n(27)'n(4r)* = ) a(n)q™.

n=1
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Kilbourn’s extension of the Ahlgren—Ono supercongruence

N[

THM 1 11

Kilbourn 27 27 2
41 F

2006 3 < 1,1, 1

=a mo 3
1>p1— (p) (mod p°),

for primes p > 2. Again, a(n) are the Fourier coefficients of
0
n(2r)'n(@r)* = ) a(n)q".
n=1

e This result proved the first of 14 related supercongruences
conjectured by Rodriguez-Villegas (2001) between
e truncated hypergeometric series 4F3 and
e Fourier coefficients of modular forms of weight 4.
e Despite considerable progress, 11 of these remain open.

McCarthy (2010), Fuselier—McCarthy (2016) prove one each; McCarthy (2010) proves “half” of each of the 14.
2017/5/4: Preprint by Long—Tu-Yui—Zudilin proving all 14 congruences.

e The 14 supercongruence conjectures were complemented with 4 + 4
conjectures for o F and 3Fb.
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A supercongruence for ¢F;

THM 111111
0sz F 29 929 929 929 929 9
28 65<11111

1) ) (fmedl )

for primes p > 2. Here, b(n) are the Fourier coefficients of

n(r)®n(4r)* + 8n(4r)? = > b(n

n=1

the unique newform in Sg(I'o(8)).

e Conjectured by Mortenson based on numerical evidence, which further
suggests it holds modulo p°.
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A supercongruence for ¢F;

THM 111111
0sz F 29 929 929 29 29 9
28 65<11111

1) ) (fmedl )

for primes p > 2. Here, b(n) are the Fourier coefficients of

n(r)®n(4r)* + 8n(4r)? = > b(n

n=1

the unique newform in Sg(I'o(8)).

e Conjectured by Mortenson based on numerical evidence, which further
suggests it holds modulo p°.

e A result of Frechette, Ono and Papanikolas expresses the b(p) in terms of
Gaussian hypergeometric functions.

e Osburn and Schneider determined the resulting Gaussian hypergeometric
functions modulo p? in terms of sums involving harmonic sums.
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A brief impression of the available ingredients

THM |n terms of Gaussian hypergeometric series,

b(p) = —p°6F5(1) + p*aFs(1) + p*2 F1(1) + p.

e Conjectured by Koike; proven by Frechette, Ono and Papanikolas (2004).

e Here, ¢, is the quadratic character mod p, €, the trivial character, and

p

ni1Fn () = i1 Fy <¢pé ¢p.,. ces Op

ps -y Ep

the finite field version of

N

11
TR
n+11n 212

g ey

1
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A brief impression of the available ingredients

THM |n terms of Gaussian hypergeometric series,
b(p) = —p°6F5(1) + p'aF3(1) + p*2F1(1) + p°.

e Conjectured by Koike; proven by Frechette, Ono and Papanikolas (2004).
e Here, ¢, is the quadratic character mod p, €, the trivial character, and
p

ps ey Ep

ni1Fn () = i1 Fy <¢pé Gpy s Gp

the finite field version of

S
—~
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S~—
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o
e
7N
|
N
0
N|=
wh—t
=

1)p_1 (mod p).
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A brief impression of the available ingredients, cont’d

THM For primes p > 2 and ¢ > 2,
Osburn
Schneider

2000 2l Foe (1) = p* Xo(p) + pYe(p) + Zo(p)

e With m = (p — 1)/2, the right-hand sides are

(mod p?).
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A brief impression of the available ingredients, cont’d

THM For primes p > 2 and £ > 2
Osburn
Schneider

20 —p* P 1(1) = PP Xe(p) + Ye(p) + Ze(p)  (mod p?).
e With m = (p — 1)/2, the right-hand sides are

111 1 1 1
7 N 2'2) 2202721
z(P) 20424 1( 1,1,1,1, 1 )ma

k=0

m 14

2 <m+k> < ) (1+4€k( m+k_Hk)
k

k=0

+ 202k% (Hyip — Hy)? — R2(HS),, — HP)).

i <m+k> <k)e(1 — Ck(2Hy — Hypsr, — Hynt),
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A harmonic identity

THM n 2 2
n+k n
k=0
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A harmonic identity

THM n 2, \ 2
Z (n ' k) <n> (1—2k(2Hy — Hpir, — Ho)) = 1
= k k

e As Nesterenko (1996), consider the partial fraction decomposition

H] (t—=3)? S By,
R(t):HJOtJr] Z(H—k t+k:)'

k=0

Congruences connecting modular forms and truncated hypergeometric series Armin Straub

13 /19



A harmonic identity

THM n 2, \ 2
Z (n ' k) <n> (1—2k(2Hy — Hpir, — Ho)) = 1
= k k

e As Nesterenko (1996), consider the partial fraction decomposition

R(t) = [Tt -5)? & < Ay, By, )

[[o+5)? Z\{t+k)? t+k
e One finds n+k2n2
A, =

By, = 2Ay (2Hy, — Hyqr — Hoi).
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A harmonic identity

THM n 2, \ 2
Z (n ' k) <n> (1—2k(2Hy — Hpir, — Ho)) = 1
= k k

As Nesterenko (1996), consider the partial fraction decomposition

[T t-5)7 & ( Ay By )

_n ;g — A
[[o+5)? Z\{t+k)? t+k
One finds e n+ kN2 /n)\>
k = k' k; )

By, = 2Ay (2Hy, — Hyqr — Hoi).

R(t) =

The residue sum theorem applied to tR(t) implies:

i (A —kBp) = > ResytR(t) = —Resy, tR(t) = 1
k=0

finite poles x

e Only needed modulo p? and n = (p — 1)/2 for Kilbourn's congruence.
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A harmonic congruence

e Using identities similarly obtained from partial fractions, the ¢Fj5
congruence can be reduced to:

LEM

e = n+ k n\>
2017 Z k (1 - 3k(2Hk — Hpyp — Hn—k))

k=0
zgcz'fﬂzr

for primes p>2and n = (p —1)/2.

e While identities can (now) be verified algorithmically, no algorithms
are available for proving such congruences.
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Paule—Schneider harmonic sums

DEF

n L
i) = 35 (1) (1 ekt — H,-0)

2003

o These are integer sequences: C1(n) =1, Ca(n) =0, C3(n) = (—1)",

can-cr (). e -r 50 (1
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Paule—Schneider harmonic sums

DEF

n L
i) = 35 (1) (1 ekt — H,-0)

2003

k=0
LEM n 2
4 +k\ (2K
0SZ '17; —(—1)" n n
. o Celn) = (=1) ;O(k) ( k )(n)

‘05

e Open question: are there single-sum hypergeometric expressions for
Cy¢(n) when £ > 77
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Another Apéry supercongruence

LEM For all odd primes p,
0SZ '17

A (p; 1) = s (1’;1) (mod p?).

e Modular parametrizations by weight 2 modular forms of level 6 and 7.
e |n other words,

O(Zﬂn:k): Z() (") () moas

1=

k
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Another Apéry supercongruence

0IE)IZEI\'/II7 For all odd primes p,
-1 —1

Modular parametrizations by weight 2 modular forms of level 6 and 7.
In other words,

(LY = £ (1))

1=

k

Proving this congruence is easy once we replace the right-hand side with

z”: 3n + 1 n+k\*

i .
Again, let us lament the lack of an algorithmic approach to such
congruences.
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An irrational equality

LEM K
A(n

=

5506

X ( + (n— 2k)(5Hg — 5Hp—t, — Hpsk + Hon—i))
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An irrational equality

LEM K
A(n

=

5506

X ( + (n— 2k)(5Hg — 5Hp—t, — Hpsk + Hon—i))

e This arises from a construction of linear forms in {(3) due to Ball. If

n!? (2t +n) [T/, (t =) - T[T, (t +n+4)

[T ot + )
Ny B Ci Dy
= + + ,
l;o((t+k)4 E RN R k)
w ~
then Z R(t) = un((3) + v,
t=1
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An irrational equality

LEM n n
A = S5

5506

X ( + (n— 2k)(5Hg — 5Hp—t, — Hpsk + Hon—i))

e This arises from a construction of linear forms in {(3) due to Ball. If
_ n!? (2t +n) HJ (t=7)- H?:l(t +n+J)
[0t + )"

:i B G D
= t+k (t+k)3 (t+k)? t+k)’

then Z R(t) = un((3) + vy.

° Remarkably, these linear forms agree with Apéry’s:

A( *'I.Ln = Z Bk
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Outlook

e Can we extend the congruence

111111
GF 2727 27 20 20 2
1,1,1,1,1

and show that it holds modulo p°?

Special relevance of p*: by Weil's bounds, |b(p)| < 2p®/?

e Can the algorithmic approaches for A = B be adjusted to A = B?

e Why do these supercongruences hold?

Very promising explanation suggested by Roberts, Rodriguez-Villegas,
Watkins (2017) in terms of gaps between Hodge numbers of an associated
motive.
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks

Robert Osburn, Armin Straub and Wadim Zudilin

A modular supercongruence for g F5: An Apéry-like story
Preprint, 2017. arXiv:1701.04098
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