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Rough outline

e Introducing Apéry-like numbers
e they are integer solutions to certain three-term recurrences
e are all of them known?

o Apéry-like numbers have interesting properties

connection to modular forms

supercongruences (still open in several cases)

multivariate extensions

polynomial analogs

o Apéry-like numbers occur in interesting places (if time permits)
moments of planar random walks

series for 1/

positivity of rational functions

counting points on algebraic varieties
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Apéry numbers and the irrationality of ((3)

e The Apéry numbers 1,5,73,1445, ...

-2 () (1)

satisfy k=0

(n+1)3A(n+1) = 2n+1)(170* + 170 +5)A(n) — n*A(n — 1).
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Apéry numbers and the irrationality of ((3)

e The Apéry numbers 1,5,73,1445, ...
"\ n+ k)2
| a3 (0) ("4)
satisfy k=0
(n+1)2A(n+1) = (2n+1)(17Tn? + 17Tn + 5)A(n) — n3A(n — 1).

THM ((3) = 3> | L is irrational.

Apéry '78 n=1

proof The same recurrence is satisfied by the “near”-integers

n

- £ 1) (£ S sttt

k=0

Then, BE" — ((3). But too fast for ((3) to be rational. O
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Zagier’s search and Apéry-like numbers

e Recurrence for Apéry numbers is the case (a,b,c) = (17,5,1) of

(n+ 1)3upi1 = (2n + 1)(an® + an + b)u, — cn’u, 1.

Q  Are there other tuples (a, b, c) for which the solution defined by

Beukers,

zagier u_1 = 0, ug = 1 is integral?
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Zagier’s search and Apéry-like numbers

e Recurrence for Apéry numbers is the case (a,b,c) = (17,5,1) of

(n+ 1)3upi1 = (2n + 1)(an® + an + b)u, — cn’u, 1.

Q  Are there other tuples (a, b, c) for which the solution defined by

Beukers,

zagier u_1 = 0, ug = 1 is integral?

e Essentially, only 14 tuples (a, b, ¢) found. (Almkvist-Zudilin)
e 4 hypergeometric and 4 Legendrian solutions (with generating functions

«@ 1 al—al —Cyuz \?
1Cz ), ———FR (" o ,
z) 1—Cz’t ( 1 lfCaz)

with a = 1 1 11 ang ©, = 24 33,26 24 . 33)

e 6 sporadic solutions

e Similar (and intertwined) story for:
e (n+ 1)Uy = (an?® + an + b)u, — en®up,_y (Beukers, Zagier)
o (n+ 13Uy = (2n+ 1)(an? + an + b)u, — n(en? + d)up—1  (Cooper)
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The six sporadic Apéry-like numbers

(a,b,c) A(n)
(17,5,1) ; <Z> i (“ Z k> i Apéry numbers
(12,4,16) Zk: <Z>2(2:)2
(10,4, 64) Xk: (’;)2(2:) (2(:__:)> ——
(7,3,81) zkj(fl)k:a"*?’k ( . (” : k) % —
| £ () (5
ea-n | S OO
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Apéry-like numbers and modular forms

e The Apéry numbers A(n) satisfy 1,5,73,1145, . ..
0’ (2r)n"(37) _ S An) ( 0" (m)n*? (67) )"
Prmser) 2\

I — | = L
modular form modular function
1+ 5q + 13¢% + 23¢° + O(q*) q — 12¢>% 4 66¢° + O(q*) q = 2™
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Apéry-like numbers and modular forms

e The Apéry numbers A(n) satisfy 1,5,73,1145, . ..
0’ (2r)n"(37) _ S An) < 0" (m)n*? (67) )"
Prmser) 2\

I — | = L
modular form modular function
1+ 5q + 13¢% + 23¢° + O(q*) q — 12¢>% 4 66¢° + O(q*) q = e27™iT

FACT Not at all evidently, such a modular parametrization exists for
all known Apéry-like numbers!
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Apéry-like numbers and modular forms

e The Apéry numbers A(n) satisfy 1,5,73,1145, . ..
0’ (2r)n"(37) _ S An) < 0" (m)n*? (67) )"
Prmser) 2\

I — | = L
modular form modular function
1+ 5q + 13¢% + 23¢° + O(q*) q — 12¢>% 4 66¢° + O(q*) q = e27™iT

FACT Not at all evidently, such a modular parametrization exists for
all known Apéry-like numbers!

e As a consequence, with z = /1 — 34z + 22,

17—z —2 1 5
An)a" = —————— " 3Fy | 27272
,,go ") 4\/5(1+x+z)3/23 2( 1,1

o Context: £(7)

modular form of (integral) weight k&
2(7) modular function

y(z) such that y(x(7)) = f(1)

Then y(z) satisfies a linear differential equation of order k + 1.
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Supercongruences for Apéry numbers

e Chowla, Cowles, Cowles (1980) conjectured that, for primes p > 5,
Alp) =5 (modp?).
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Supercongruences for Apéry numbers

e Chowla, Cowles, Cowles (1980) conjectured that, for primes p > 5,
Alp) =5 (modp?).
e Gessel (1982) proved that A(mp) = A(m)  (modp?).
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Supercongruences for Apéry numbers

e Chowla, Cowles, Cowles (1980) conjectured that, for primes p > 5,
Alp) =5 (modp?).

e Gessel (1982) proved that A(mp) = A(m)  (modp?).

g-l-:M The Apéry numbers satisfy the supercongruence (p=5)
Coster‘
o A(mp") = A(mp™™")  (modp™).

Armin Straub
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Supercongruences for Apéry numbers

e Chowla, Cowles, Cowles (1980) conjectured that, for primes p > 5,
Alp) =5 (modp?).

e Gessel (1982) proved that A(mp) = A(m)  (modp?).

THM The Apéry numbers satisfy the supercongruence

(mod p°").

Beukers,
Coster
A(mp") = A(mp" ™)

'85, '88

EG For primes p, simple combinatorics proves the congruence

G AR

p k
For p > 5, Wolstenholme's congruence shows that, in fact,

<2]f) —2  (modp?).

Armin Straub
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Supercongruences for Apéry-like numbers

e Conjecturally, supercongruences like

— -1
A(mpr) = A(mpr ) (mod p37‘) Robert Osburn Brundaban Sahu
(University of Dublin) (NISER, India)
hold for all Apéry-like numbers. Osburn-Sahu '09

e Current state of affairs for the six sporadic sequences from earlier:

(a,b,¢) | A(n)
(17, 9, 1) Zk (2)2 (n:k)z Beukers, Coster '87-'88
(12,4,16) | 3, (1)° (1) Osburn-Sahu-S 14
(10,4,64) | >, (2)2 (Qkk) (2(:_}5)) Osburn—Sahu '11
(7,3,81) | S(=1)83m % () (1) S pentt 1
(11,5,125) | S (=D*()* ("5 + ("5.7%)) | osburn-sahu-s ‘14
(9,3,-27) | Xhy (Z) (O ED open
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Non-super congruences are abundant

a(mp”) = a(mp’™")  (modp") (©)

e realizable sequences a(n), i.e., for some map 7" : X — X,

an)=#{xr e X : T"x =z} “points of period n”

Everest—van der Poorten—Puri-Ward '02, Arias de Reyna '05
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Non-super congruences are abundant

a(mp”) = a(mp’™")  (modp") (©)

e realizable sequences a(n), i.e., for some map 7" : X — X,

an)=#{xr e X : T"x =z} “points of period n”
Everest—van der Poorten—Puri-Ward '02, Arias de Reyna '05
o a(n) =ct A(f]f)n van Straten-Samol '09

if origin is only interior pt of the Newton polyhedron of A(z) € Z[zi?,. .., xfl]
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Non-super congruences are abundant

a(mp”) = a(mp’™")  (modp") (©)

e realizable sequences a(n), i.e., for some map 7" : X — X,

aln) =#{z e X : Tz =z} “points of period n"
Everest—van der Poorten—Puri-Ward '02, Arias de Reyna '05
o a(n) =ct A(f]f)n van Straten—Samol '09
if origin is only interior pt of the Newton polyhedron of A(z) € Z[zi?,. .., xfl]

e If a(1) =1, then (C) is equivalent to exp (i “(:)Tn> € Z[[T]].

This is a natural condition in formal group theory.
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Cooper’s sporadic sequences

e Cooper's search for integral solutions to
(n 4+ 1)uns1 = (2n + 1)(an® + an + b)u, — n(cn® 4+ d)un 1

revealed three additional sporadic solutions: s10 and supercongruence known

=2 () -2 ()

sis(n) = [:Zj]u)k(’;) (2:) (257;: :)> [ (zn ok 1) . (% - 3k>}

Supercongruences for Apéry-like numbers Armin Straub

10 / 27



Cooper’s sporadic sequences

e Cooper's search for integral solutions to

(n 4+ 1)uns1 = (2n + 1)(an® + an + b)u, — n(cn® 4+ d)un 1
revealed three additional sporadic solutions: s10 and supercongruence known
n 2 k‘ kj n 4
s =3 () ()G e =3 ()
k=0 k=0
[n/3]
_ n\ (2k\ (2(n — k) 2n—3k—1 2n — 3k
st = 32 =0 () () (o) [ () + ()
CONJ
Cooper s7(mp) = s7(m) (mod p?) p>3
s1s(mp) = s18(m) (mod p?)

Supercongruences for Apéry-like numbers Armin Straub

10 / 27



Cooper’s sporadic sequences

e Cooper's search for integral solutions to
(n 4+ 1)uns1 = (2n + 1)(an® + an + b)u, — n(cn® 4+ d)un 1

revealed three additional sporadic solutions: s10 and supercongruence known

n

=2 () -2 ()

) — [nf(q)’“ (Z) (2:) (2(;::)) [(Qn _ff - 1) N <2n ; 31«)}

k=0
CONJ
C;[')lezer 57(mp) = S7 (m) (modp3) p=3
s18(mp) = s18(m) (modpQ)
THM _
Osburn s7(mp") = s7(mp™ 1) (mod p°") P25
2008 s1g(mp”) = slg(mpr_l) (modpQT)

Supercongruences for Apéry-like numbers Armin Straub

10 / 27



Diagonals

e Given a series

F(zy,...,mq) = Z a(ni,...,ng)z" - al,

ni,...,ng =0

its diagonal coefficients are the coefficients a(n, ..., n).
EG 1

l—xz—y

has diagonal coefficients (*").
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Diagonals

e Given a series
F(zy,...,mq) = Z a(ni,...,ng)z" - al,
N1y ng 20
its diagonal coefficients are the coefficients a(n, ..., n).
EG 1 00 .
T—o—p Z(QE +y)

n=0

has diagonal coefficients (*").
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Diagonals

e Given a series
F(zy,...,mq) = Z a(ni,...,ng)z" - al,
N1y ng 20
its diagonal coefficients are the coefficients a(n, ..., n).
EG 1 o0
T—o—p Z(CU +y)"

n=0

has diagonal coefficients (*").
For comparison, their univariate generating function is

i <2n>$n 1
o \n V1—dz
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Diagonals

e Given a series
F(zy,...,mq) = Z a(ni,...,ng)z" - al,
N1y ng 20
its diagonal coefficients are the coefficients a(n, ..., n).
EG 1 o0
T—o—p Z(CU +y)"

n=0

has diagonal coefficients (*").
For comparison, their univariate generating function is

o
o \n V1—dz
Gessel

e The diagonal of a rational function is D-finite. Zeilberger
Lipshitz
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Apéry numbers as diagonals

THM The Apéry numbers are the diagonal coefficients of
S 2014

1
(]. — 1 — :EQ)(]. — I3 — .’E4) — T1T2X3T4
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Apéry numbers as diagonals

THM The Apéry numbers are the diagonal coefficients of
S 2014

1
(]. — 1 — :EQ)(]. — I3 — .’134) — T1T2X3T4

THM For = (z1,...,%,) and m = (m1,...,my) € ZY,,
MacMahon
1915
m;

1 n n
my__ - [npm Bl ,
[33 ]det (InfBX) [{17 }Hl 72::1 NS

where B € C"*"™ and X is the diagonal matrix with entries z1, ..., x,.
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Apéry numbers as diagonals

THM The Apéry numbers are the diagonal coefficients of

S 2014
! = Z A(n)x™
(]. — 1 — :EQ)(]. — I3 — .’134) — T1T2X3T4 7
nezs,
.\LI;/.'MH Forx = (z1,...,z,) and m = (mq,...,m,) € Z,
1915
m;
1 n n
[33 ]det(InfBX) [{17 }E 72::1 1,50 )
where B € C"*"™ and X is the diagonal matrix with entries z1, ..., x,.
1110 r1
|1 100 - T2
B=10o011 X = 3
0111 T4

A(n) = [x"](z1 + x2 + x3)" (1 + 22)"? (23 + 14)" (22 + T3 + 14)™
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Apéry numbers as diagonals

THM The Apéry numbers are the diagonal coefficients of
S 2014

1
= A(n)x™.
(]. — 1 — :EQ)(]. — I3 — .’134) — T1T2X3T4 Z ( )

nezi,

e The coefficients are the multivariate Apéry numbers

Afn) = kez; (7;) <7;L:) (m +:12 — k) <n3 +,Z4 — k:)
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Apéry numbers as diagonals

THM The Apéry numbers are the diagonal coefficients of
S 2014

1
= A(n)x™.
(]. — 1 — :EQ)(]. — I3 — .’134) — T1T2X3T4 Z ( )

nezi,

e The coefficients are the multivariate Apéry numbers

Afn) = kez; (7;) <7;L:) (m +:12 — k) <n3 +,Z4 — k:)

e Univariate generating function:

17—z -z 111
A(n)z™ = F(222
2_ A o1+ +2)32° 2( 1,1

n>0 ’

where z = 1 — 34z + x2.

1024z
(1—z+2)*)’
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Apéry numbers as diagonals

THM The Apéry numbers are the diagonal coefficients of

S 2014
1 n
= Z A(n)z™.
(]. — 1 — :EQ)(]. — I3 — .’134) — T1T2X3T4 7
nezs,
e Well-developed theory of multivariate asymptotics e.g., Pemantle-Wilson
e Such diagonals are algebraic modulo p". Furstenberg, Deligne 67, '84
Automatically leads to congruences such as
A(’I’L) — 1 (mOd 8)’ it n even, Chowla—Cowles—Cowles '80
- 5 (mod 8) if n odd Rowland-Yassawi '13
, .
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Multivariate supercongruences

P;M Define A(n) = A(ny,n2,n3,n4) by

! = Z A(n)z™.

(1 —21 —x9)(1 —x3 — x4) — T1T2T3T4 nezh,

e The Apéry numbers are the diagonal coefficients.

e For p > 5, we have the multivariate supercongruences

Anp") = A(np™™")  (modp®).
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Multivariate supercongruences

'SI"I;IOI;{‘I Define A(n) = A(ny,n2,n3,n4) by

! = Z A(n)z™.

(1 —21 —x9)(1 —x3 — x4) — T1T2T3T4 nezh,

e The Apéry numbers are the diagonal coefficients.

e For p > 5, we have the multivariate supercongruences

Anp") = A(np™™")  (modp®).

p—1
° Z &(n)x" — F(x) - Z a(pn)xi‘m — %Z F(Cgl‘) ¢ = o27i/p
k=0

n=0 n=0
e Hence, both A(np”) and A(np"~!) have rational generating function.

The proof, however, relies on an explicit binomial sum for the coefficients.
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Multivariate supercongruences

P;M Define A(n) = A(ny,n2,n3,n4) by

! = Z A(n)z™.

(1 —21 —x9)(1 —x3 — x4) — T1T2T3T4 nezh,

e The Apéry numbers are the diagonal coefficients.

e For p > 5, we have the multivariate supercongruences

Anp") = A(np™™")  (modp®).

e By MacMahon’s Master Theorem,

o= (1) () (2 ).
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Multivariate supercongruences

P;M Define A(n) = A(ny,n2,n3,n4) by

! = Z A(n)z™.

(1 —21 —x9)(1 —x3 — x4) — T1T2T3T4 nezh,

e The Apéry numbers are the diagonal coefficients.

e For p > 5, we have the multivariate supercongruences

Anp") = A(np™™")  (modp®).

e By MacMahon’s Master Theorem,
o ny ns TL1+TY,2—k n3+n4—k:
=2 () () ()

e Because A(n — 1) = A(—n,—n, —n, —n), we also find

A(mp" —1) = A(mp"™~ 1 =1)  (modp"). Beukers '85
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Many more conjectural multivariate supercongruences

e Exhaustive search by Alin Bostan and Bruno Salvy:

1/(1 — p(z,y, z, w)) with p(z, y, z, w) a sum of distinct monomials; Apéry numbers as diagonal

1
1—(z+y+ay)(z+w+ 2w)
1
1—(14+w)(z+ 2y +yz+ 2z + 2yz)

1
1—(y+2z+zy+zz+ 2w+ zyw + zyzw)
1
1—(y+2z+ 22+ wz+ zyw + zzw + TY2W)
1
1—(z+zy+yz + 2w+ zyw + yzw + zyzw)

1

1-—(z4 (z+y)(z +w) + zyz + zyzw)
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Many more conjectural multivariate supercongruences

e Exhaustive search by Alin Bostan and Bruno Salvy:

1/(1 — p(z,y, z, w)) with p(z, y, z, w) a sum of distinct monomials; Apéry numbers as diagonal

1
1—(z+y+ay)(z+w+ 2w)
1
1—(14+w)(z+ 2y +yz+ 2z + 2yz)

1
1—(y+2z+zy+zz+ 2w+ zyw + zyzw)
1
1—(y+2z+ 22+ wz+ zyw + zzw + TY2W)
1
1—(z+zy+yz + 2w+ zyw + yzw + zyzw)

1

1-—(z4 (z+y)(z +w) + zyz + zyzw)

CONJ The coefficients B(n) of each of these satisfy, for p > 5,

B(np") = B(np'™")  (modp).
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An infinite family of rational functions

THM ¢
O Let A€ ZS

o With d = A; + ...+ Ay. Define Ay(n) by
1

f— A ’VL'
H [1 - Z x)\1+...+)\j_1+7«] — T1Xo - Tg Z )\(n)m

d
1<5<0 1<r<) nezs,

e If ¢ > 2, then, for all primes p,
Ax(np") = Ax(np™™1)  (modp®).
e If > 2 and max(A,...,\¢) < 2, then, for primes p > 5,
Ax(np") = Ax(np’™")  (modp™).
EG  \=(2,2 A=(2,1)

1 1
(1 — T — mg)(l — T3 — .T4) — T1X2T3%4 (1 — T — 1'2)(1 — 1’3) — T1X2X3
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Further examples

EG 1
(1 —21 —29)(1 — x3) — 212923

has as diagonal the Apéry-like numbers, associated with ¢(2),
n 2
n n+k
so=2() (1)

EG 1
(I—z1)(l—z2) - (1 —xg) —x129 - T4

haS as dlagOna| the numbers d = 3: Franel, d = 4: Yang—Zudilin

Yy(n) = Z (Z)d

k=0

e In each case, we obtain supercongruences generalizing results of
Coster (1988) and Chan—Cooper=Sica (2010).
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A conjectural multivariate supercongruence

CONJ The coefficients Z(n) of
S 2014

1
= Z(n)x™
1 — (21 + 22+ 23 + x4) + 2721297324 Z (n)

nezi,

satisfy, for p > 5, the multivariate supercongruences

Z(np") = Z(np"™")  (modp™).
e Here, the diagonal coefficients are the Almkvist—Zudilin numbers

- Fo )

k=0

for which the univariate congruences are still open.
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Basic g-analogs

e The natural number n has the g-analog:

1
pa =14qg+...+¢" !

In the limit ¢ — 1 a g-analog reduces to the classical object.
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Basic g-analogs

e The natural number n has the g-analog:

1
pa =14qg+...+¢" !

In the limit ¢ — 1 a g-analog reduces to the classical object.

e The g-factorial:
(]! = [nly [n—1],---[1],

e The g-binomial coefficient:

Supercongruences for Apéry-like numbers Armin Straub
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A ¢-binomial coefficient

EG
6 6-5
-—— " =3.5
(2
<6> _(+q+@+ P+ )0 +a++ +qY)
2 q 1+g¢
Supercongruences for Apéry-like numbers Armin Straub
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A ¢-binomial coefficient

EG
6 6-5

<6> A+ g+ P+ P+ )+ g+ + P+ 4t
q

2 1+g¢
=(1-g¢+)1+q+¢) L+qg++¢*+¢"

=[3l, =[5l,
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A ¢-binomial coefficient

EG
6 6-5

<6> A+ g+ P+ P+ )+ g+ + P+ 4t
q

2 1+g¢
=(1-g¢+)Q+q+¢) L+qg++¢*+¢"
—®o(q) =[], —[5],

e The cyclotomic polynomial ®¢(q) becomes 1 for g =1
and hence invisible in the classical world
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The coefficients of ¢-binomial coefficients

e Here's some ¢-binomials in expanded form:

EG 6
<2> = +q¢" +2¢%+2¢° +3¢* +2¢* +2¢* + ¢+ 1
q

9

<3> — g1 4 ¢ + 2410 + 3¢5 + 4™ + 5¢13 + 7¢'2
I +7q11 +8q10+8q9+8q8+7q7+7q6+5q5

+4¢' +3¢° + 2% + g+ 1

e The degree of the g-binomial is k(n — k).
e All coefficients are positive!

e |n fact, the coefficients are unimodal. Sylvester, 1878
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A few faces of the ¢-binomial coefficient

The g-binomial coefficient (Z)
q

e satisfies a g-version of Pascal’s rule, (n> = (
J q

n—1
7—1

)3,

Supercongruences for Apéry-like numbers
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A few faces of the ¢-binomial coefficient

The g-binomial coefficient (Z)
q

g - : —1 -1
e satisfies a g-version of Pascal's rule, (n> = (n ) +q3<” , ) .
174 -1 q J q

e counts k-subsets of an n-set weighted by their sum,
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A few faces of the ¢-binomial coefficient

The g-binomial coefficient (Z)

q

e . , j —1 1
e satisfies a g-version of Pascal's rule, (n> = (n ) +q~7(” , ) .
174 -1 q J q

e counts k-subsets of an n-set weighted by their sum,
o features in a binomial theorem for noncommuting variables,

n

(@+y)" =" (n> aly", if yz = qzy,

j:ojq
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A few faces of the ¢-binomial coefficient

The g-binomial coefficient (Z)

q

e . ) [ -1 n—1
e satisfies a g-version of Pascal's rule, (n> = (n ) +q~7(” , ) .
174 -1 q J q
e counts k-subsets of an n-set weighted by their sum,
o features in a binomial theorem for noncommuting variables,
n . n j.on—j H
(z+y) =Z(> aly" ™, if yz = gy,

j:ojq

e has a g-integral representation analogous to the beta function,
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A few faces of the ¢-binomial coefficient

The g-binomial coefficient (Z)

q

7—1
counts k-subsets of an n-set weighted by their sum,

satisfies a g-version of Pascal’s rule, (;) = (ni 1) +¢ (n; 1) .
q q q

features in a binomial theorem for noncommuting variables,

n

(@+y)" =" (n> aly", if yz = qzy,

j:ojq

e has a g-integral representation analogous to the beta function,

counts the number of k-dimensional subspaces of Fy.
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A g¢-analog of Babbage’s congruence

e Combinatorially, we again obtain: “q-Chu-Vandermonde”

(), 720,60
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A g¢-analog of Babbage’s congruence

e Combinatorially, we again obtain:

(), =20,

=¢" +1=

QPQ

(Note that [p], divides <£> unless k =0or k =p.)
q

“g-Chu-Vandermonde”

(mod [p]7)
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A g¢-analog of Babbage’s congruence

e Combinatorially, we again obtain: “q-Chu-Vandermonde”
2p p p %
(), =20, 62
P/q k g \P q
2
=¢" +1=2],» (mod [p]?)

(Note that [p], divides <£> unless k =0or k =p.)
q

e This combinatorial argument extends to show:

THM /ap _[(a 9
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A g¢-analog of Babbage’s congruence

e Combinatorially, we again obtain: “q-Chu-Vandermonde”
2p p p —k)?2
(), =20, 62
P/q k g \P q
2
=¢" +1=2],» (mod [p]?)

(Note that [p], divides <£> unless k =0or k =p.)
q

e This combinatorial argument extends to show:

THM /ap _[(a 9
e Similar results by Andrews; e.g.:

(), a2 @) modip
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A g-analog of Ljunggren’s congruence

e The following answers the question of Andrews to find a ¢g-analog of
Wolstenholme's congruence.

THM For any prime p,

(), = ()=o) o =07 mottiy
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A g-analog of Ljunggren’s congruence

e The following answers the question of Andrews to find a ¢g-analog of
Wolstenholme's congruence.

THM For any prime p,

(), = ()=o) o =07 mottiy

EG Choosing p =13, a =2, and b =1, we have
26
(13> =1 +q169 . 14((]13 . 1)2 + (1 +q+... +q12)3f(Q)
q

where f(q) = 14 — 41q + 41¢> — ... + ¢'3% is an irreducible
polynomial with integer coefficients.
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A g-analog of Ljunggren’s congruence

e The following answers the question of Andrews to find a ¢g-analog of
Wolstenholme's congruence.

THM i
ULl For any prime p,
2
ap\ _ (a o a\p‘—1 P 3
<bp)q_<b>qu . b)b(b) o (@1 (amodlply)

e Note that 1’% is an integer if (p,6) = 1.

(The polynomial congruence holds for p = 2,3 but coefficients are rational.)
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A g-analog of Ljunggren’s congruence

e The following answers the question of Andrews to find a ¢g-analog of
Wolstenholme's congruence.

THM i
ULl For any prime p,
2
ap\ _ (a o a\p" =1 ., .2 3
<bp)q_<b>qu (a W’(b) o (@~ 17 (modlply).

e Note that 1’% is an integer if (p,6) = 1.

(The polynomial congruence holds for p = 2,3 but coefficients are rational.)

e Ljunggren’s classical congruence holds modulo p3*"
with  the p-adic valuation of ab(a — b)(3). Jacobsthal '52

Is there a nice explanation or analog in the g-world?
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A g-analog of Ljunggren’s congruence

e The following answers the question of Andrews to find a ¢g-analog of
Wolstenholme's congruence.

THM i
ULl For any prime p,
2
ap\ _ (a o a\p*—1 P 03
()0, o)t st

e Note that 1’% is an integer if (p,6) = 1.

(The polynomial congruence holds for p = 2,3 but coefficients are rational.)

e Ljunggren’s classical congruence holds modulo p3*"
with  the p-adic valuation of ab(a — b)(3). Jacobsthal '52

Is there a nice explanation or analog in the g-world?

e The congruence holds mod ®,,(¢q)? if p is replaced by any integer n.
(No classical counterpart since ®,,(1) = 1 unless n is a prime power.)
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A g-version of the Apéry numbers

e A symmetric g-analog of the Apéry numbers:

n 2 2

k)2 [T n+k

At =3 (1) (")
k=0 q

q

e Appear implicitly in work of Krattenthaler—Rivoal-Zudilin '06
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A g-version of the Apéry numbers

e A symmetric g-analog of the Apéry numbers:

" n— k)2 n + kj 2
=>4 ;
k=0 q q

e Appear implicitly in work of Krattenthaler—Rivoal-Zudilin '06
e The first few values are:

A(0) =1
A1) =5
A(2) =73
A(3) = 1445

Aq(0) =1
A1) =1+3¢+¢°

Ay(2) = 14 3¢+ 9¢% + 143 + 19¢* + 14¢°

+ 9q6 + 3q7 + q8

A (3) =1+ 3¢+ 9¢* + 22¢° + 43¢* + 76¢°

+117¢5 + ... 4+ 3¢" 4 ¢'8

Supercongruences for Apéry-like numbers
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g-supercongruences for the Apéry numbers

'SI'I;OI:Q The g-Apéry numbers, defined as
n 2 2
n n+k
Al = a2 (1) (" 7F) |
k=0 & q g q

satisfy the supercongruences

2 _
Aglpn) = A (n) ~ T (@ < 172f(n)  (mod o).
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g-supercongruences for the Apéry numbers

'SI'I;OI:Q The g-Apéry numbers, defined as
n 2 2
n n+k
Al = a2 (1) (" 7F) |
k=0 & q g q

satisfy the supercongruences

2 _
) = T @ =12 () (mod [pf2).

Ay(pn) = A B

e The numbers f(n) can be expressed as 0, 5,292, 13005, 528016, . . .

fln) = gg(n, k) <Z>2 (” Z k)Q, g(n k) = k(2n — k) + (nfk)?

e Similar g-analogs and congruences for other Apéry-like numbers?
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Some of many open problems

Supercongruences for all Apéry-like numbers
e proof of all the classical ones
e uniform explanation, proofs not relying on binomial sums
Apéry-like numbers as diagonals
e find minimal rational functions
e extend supercongruences
e any structure?
polynomial analogs of Apéry-like numbers
e find g-analogs (e.g., for Almkvist-Zudilin sequence)
® g-supercongruences
e is there a geometric picture?
Many further questions remain.
e is the known list complete?
e higher-order analogs, Calabi—Yau DEs
e modular supercongruences Beukers '87, Ahlgren-Ono "00

A (1%1) =a(p) (modp?), Z a(n)q™ = n*(21)n*(47)

n=1
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks

A. Straub

Multivariate Apéry numbers and supercongruences of rational functions
Algebra & Number Theory, Vol. 8, Nr. 8, 2014, p. 1985-2008

R. Osburn, B. Sahu, A. Straub
Supercongruences for sporadic sequences
to appear in Proceedings of the Edinburgh Mathematical Society, 2014

A. Straub, W. Zudilin
Positivity of rational functions and their diagonals
to appear in Journal of Approximation Theory (special issue dedicated to Richard Askey), 2014

M. Rogers, A. Straub
A solution of Sun's $520 challenge concerning 520/
International Journal of Number Theory, Vol. 9, Nr. 5, 2013, p. 1273-1288

J. Borwein, A. Straub, J. Wan, W. Zudilin (appendix by D. Zagier)
Densities of short uniform random walks
Canadian Journal of Mathematics, Vol. 64, Nr. 5, 2012, p. 961-990

A. Straub
A g-analog of Ljunggren's binomial congruence
DMTCS Proceedings: FPSAC 2011, p. 897-902
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Applications of
Apéry-like numbers

e Random walks a ﬂ

Jon Borwein  Dirk Nuyens  James Wan Wadim Zudilin
U. of Newcastle, AU K.U.Leuven, BE SUTD, SG U. of Newcastle, AU

T

e Series for 1/7

Mat Rogers
U. of Montreal, CA

e Positivity of rational functions

Wadim Zudilin
U. of Newcastle, AU
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Example I: Random walks

n steps in the plane
(length 1, random direction)
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Example I: Random walks

n steps in the plane
(length 1, random direction)
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Example I: Random walks

n steps in the plane
(length 1, random direction)

e p,(x) — probability density of distance traveled

05

o
0.3
04
03 02
o p3(z) pa(7)
01
01
05 10 15 20 25 30 1 2 3 4
035
0.35]
o
oo
o
020
0.20
0.15 015
ps(x) pe(x)
0.05] 0.05
i 1 2 3 4 5 1 2 3 4 5 6
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Example I: Random walks

n steps in the plane
(length 1, random direction)

e p,(x) — probability density of distance traveled

05

. p3(x) pa(7)
01
01
05 10 15 20 25 30 1 2 3 4
035
035)
030
00|
025
025|
020
020)
015) 0B
010 p5 ($) 010 p6 (:L‘)
005| 005
1 2 3 4 5 T 2 3 4 B 6

o Wy(s) = [~ #pn(x) dz — probability moments

4
Wa(1) = —, Ws(1)
classical

328 /1N | 27223 /2
22 ez i, pCY (e
16 4 (3> R <3>

Borwein—Nuyens—S-Wan, 2010
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Example I: Random walks

e The probability moments
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Example I: Random walks

e The probability moments

j=0
k 2 .
2 2(k —
min =32 (5) (5) ()
NI\ k—
THM B2
Nuyers. Wh(2k) = ( >
-Wan ay,...,0n
52\[;\{0 a1+"'+an:k

Armin Straub

30 /38
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Example I: Random walks

N
(

p3(z) “ pa(w) - ps(7)

n) = sy
2
2V/3 T %,% x? (9*332) )
= S | |
n = o B ( N CETk with o
2 V16 — 22 L1116 —22)?
174(313)——2L Re 3% 25272 ( :c4) new
T T 6 108z BSWZ 2011
V5
£(0) mF(T{,)) (Z)D(:5)0(L) ~ 0.32993
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Example II: Series for 1/7

= 1
Z (6n+1) 4
oo
Z 42 +5) 6m
n=0

Srinivasa Ramanujan
Modular equations and approximations to m
Quart. J. Math., Vol. 45, p. 350-372, 1914
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Example II: Series for 1/7

— 1
Z (6n+1) 4

o0

Z 42 +5)

=0

1_ \fi (4n)! 1103 4 26390n.
3964

m 9801

o Last series used by Gosper in 1985 to compute 17,526, 100 digits of 7
e First proof of all of Ramanujan’s 17 series by Borwein brothers

Srinivasa Ramanujan
Modular equations and approximations to m
Quart. J. Math., Vol. 45, p. 350-372, 1914

Jonathan M. Borwein and Peter B. Borwein

Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity
Wiley, 1987
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32/38



Example II: Series for 1/7

e Sato observed that series for % can be built from Apéry-like numbers:

EG

n 2
Chan For the Domb numbers D(n) = Z (Z) (2:> <2(:_:)>,
k=0

2003
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Example II: Series for 1/7

e Sato observed that series for % can be built from Apéry-like numbers:

EG n 2 —
Chan For the Domb numbers D(n) = Z (Z) (2:> (2(: :)>
k=0

2003

26n
e Sun offered a $520 bounty for a proof the following series:

aHM @_21054n+233 Z”: n\? (2k (—1)Fg2h—n
0 = 480n n) & \k) \n
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Example II: Series for 1/7

e Suppose we have a sequence a,, with modular parametrization

Zan ()" = f(r) .

| I— |
modular modular
function form
e Then: o ()
> an(A+ Bn)z(r)" = Af() + B—— f'(7)
n=0 z (T)
(1/2 ) 1 16
T; (A h) o = —
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Example II: Series for 1/7

e Suppose we have a sequence a,, with modular parametrization

Z an a(r)" = f(7) .
modular mlmalar
function form
e Then: o )
> an(A+ Br)e(r)" = Af(r) + B (TT) f(7)
n=0

Z (IT/L Jn (427L+5)23),n = %

n=0

FACT o Forrt € Q(\/Td) x(7) is an algebraic number.

e f'(7) is a quasimodular form.
6

e Prototypical Ey(7) satisfies 7By ( — 1) — By(r) = —.
T

e These are the main ingredients for series for 1 /7. Mix and stir.
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Example IlI: Positivity of rational functions

e A rational function

— n nd
F(xl,...,xd) = E anhm’ndxll...xd

is positive if ap, . n, > 0 for all indices.

EG The following rational functions are positive.

Szegb '33
1 g

S T,Y,2) = _ Kaluza :33
( Y ) 1— (x—&—y—l—z)—l—%(ly-i—yZ—&-zx) Askey—GaspeSry72

1 Askey—Gasper '77
Koornwinder '78

o 1—(z z dxyz Ismail-Tamhankar '79
( Ty ) + 4 Gillis-Reznick—Zeilberger '83

Az, y, 2)

e Both functions are on the boundary of positivity.
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Example IlI: Positivity of rational functions

e A rational function

— n nd
F(xl,...,xd) = E an17‘..7nd$11...xd

is positive if ap, . n, > 0 for all indices.

EG The following rational functions are positive.

Szegb '33
1 g

S T,Y,2) = _ Kaluza :33
( Y ) 1— (x—&—y—l—z)—l—%(ly-i—yZ—&-zx) Askey—GaspeSry72

1 Askey—Gasper '77
Koornwinder '78

o 1—(z z dxyz Ismail-Tamhankar '79
( Ty ) + 4 Gillis-Reznick—Zeilberger '83

Az, y, 2)

e Both functions are on the boundary of positivity.

n 3
e The diagonal coefficients of A are the Franel numbers Z <Z> .
k=0
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Example IlI: Positivity of rational functions

CONJ The following rational function is positive:
Kauers-
Zeilberger

2008 1

1—(z+y+z+w)+2yzw+ z2w + syw + xy2) + dryzw

e Would imply conjectured positivity of Lewy—Askey rational function

1
l—(z+y+z4+w)+ 2(zy+ 2z +zw+yz +yw+ 2w)

Recent proof of non-negativity by Scott and Sokal, 2013

Supercongruences for Apéry-like numbers Armin Straub



Example IlI: Positivity of rational functions

CONJ The following rational function is positive:
Kauers-
Zeilberger

2008 1

1—(z+y+z+w)+2yzw+ z2w + syw + xy2) + dryzw

e Would imply conjectured positivity of Lewy—Askey rational function

1
l—(z+y+z4+w)+ 2(zy+ 2z +zw+yz +yw+ 2w)

Recent proof of non-negativity by Scott and Sokal, 2013

PROP The Kauers—Zeilberger function has diagonal coefficients

S-Zudilin
n 2 2
n 2k
dy, = E .
k=0

2013
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Positivity of rational functions

e Consider rational functions F' = 1/p(x1,...,xq) with p a symmetric
polynomial, linear in each variable.

Q Under what condition(s) is the positivity of F' implied by the
positivity of its diagonal?
EG

° "Gty IS positive.

—— has positive dia al but is not positive.
° T positive diagon ut is not positive
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Positivity of rational functions

e Consider rational functions F' = 1/p(x1,...,xq) with p a symmetric
polynomial, linear in each variable.

Q Under what condition(s) is the positivity of F' implied by the
positivity of its diagonal?
EG

° "Gty IS positive.

—— has positive dia al but is not positive.
° T positive diagon ut is not positive

1
°
1

is not positive.
+x
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Positivity of rational functions

e Consider rational functions F' = 1/p(x1,...,xq) with p a symmetric
polynomial, linear in each variable.

Q Under what condition(s) is the positivity of F' implied by the
positivity of its diagonal?
EG

° "Gty IS positive.

—— has positive dia al but is not positive.
° T positive diagon ut is not positive

1
°
1

is not positive.
+x

Q F positive <= diagonal of F' and F|,,— are positive?
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Positivity of rational functions

e Consider rational functions F' = 1/p(x1,...,xq) with p a symmetric
polynomial, linear in each variable.

Q Under what condition(s) is the positivity of F' implied by the
positivity of its diagonal?

EG 1 . ..
* T @1y IS positive.

has positive dia al but is not positive.
° T positive diagon ut is not positive

is not positive.

1
[ )
1+

Q F positive <= diagonal of F' and F|,,— are positive?

THM 1 . .
S-Zudilin F(z,y) = is positive
2013 1+ci(z+y) + cxy

<= diagonal of F' and F|,—( are positive
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THANK YOQOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks

A. Straub

Multivariate Apéry numbers and supercongruences of rational functions
Algebra & Number Theory, Vol. 8, Nr. 8, 2014, p. 1985-2008

R. Osburn, B. Sahu, A. Straub
Supercongruences for sporadic sequences
to appear in Proceedings of the Edinburgh Mathematical Society, 2014

A. Straub, W. Zudilin
Positivity of rational functions and their diagonals
to appear in Journal of Approximation Theory (special issue dedicated to Richard Askey), 2014

M. Rogers, A. Straub

A solution of Sun’s $520 challenge concerning 520/
International Journal of Number Theory, Vol. 9, Nr. 5, 2013, p. 1273-1288

J. Borwein, A. Straub, J. Wan, W. Zudilin (appendix by D. Zagier)

Densities of short uniform random walks
Canadian Journal of Mathematics, Vol. 64, Nr. 5, 2012, p. 961-990
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