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Sun’s challenge

520

π
=

∞∑
n=0

1054n+ 233

480n

(
2n

n

) n∑
k=0

(
n

k

)2(2k

n

)
(−1)k82k−n

CONJ

• roughly, each two terms of the outer sum give one correct digit

“ I would like to offer $520 (520 US dollars) for the person
who could give the first correct proof of (*) in 2012 because
May 20 is the day for Nanjing University.

Zhi-Wei Sun (2011) ”
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The earliest series for 1/π? Introduction

2

π
= 1− 5

(
1

2

)3

+ 9

(
1.3

2.4

)3

− 13

(
1.3.5

2.4.6

)3

+ . . .

=

∞∑
n=0

(1/2)3n
n!3

(−1)n(4n+ 1)

• Included in first letter of Ramanujan to Hardy
but already given by Bauer in 1859 and further studied by Glaisher

• Limiting case of the terminating (Zeilberger, 1994)

Γ(3/2 +m)

Γ(3/2)Γ(m+ 1)
=
∞∑
n=0

(1/2)2n(−m)n
n!2(3/2 +m)n

(−1)n(4n+ 1)

which has a WZ proof Carlson’s theorem justifies setting m = −1/2.

A solution of Sun’s $520 challenge concerning 520/π Armin Straub
3 / 25



The earliest series for 1/π? Introduction

2

π
= 1− 5

(
1

2

)3

+ 9

(
1.3

2.4

)3

− 13

(
1.3.5

2.4.6

)3

+ . . .

=

∞∑
n=0

(1/2)3n
n!3

(−1)n(4n+ 1)

• Included in first letter of Ramanujan to Hardy
but already given by Bauer in 1859 and further studied by Glaisher

• Limiting case of the terminating (Zeilberger, 1994)

Γ(3/2 +m)

Γ(3/2)Γ(m+ 1)
=

∞∑
n=0

(1/2)2n(−m)n
n!2(3/2 +m)n

(−1)n(4n+ 1)

which has a WZ proof Carlson’s theorem justifies setting m = −1/2.

A solution of Sun’s $520 challenge concerning 520/π Armin Straub
3 / 25



The first of Ramanujan’s series Introduction

4

π
= 1 +

7

4

(
1

2

)3

+
13

42

(
1.3

2.4

)3

+
19

43

(
1.3.5

2.4.6

)3

+ . . .

=

∞∑
n=0

(1/2)3n
n!3

(6n+ 1)
1

4n

16

π
=

∞∑
n=0

(1/2)3n
n!3

(42n+ 5)
1

26n

• Starred in High School Musical, a 2006 Disney production

• Both series also have WZ proof (Guillera, 2006)

but no such proof known for more general series

Srinivasa Ramanujan
Modular equations and approximations to π
Quart. J. Math., Vol. 45, p. 350–372, 1914
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Another one of Ramanujan’s series Introduction

1

π
=

2
√

2

9801

∞∑
n=0

(4n)!

n!4
1103 + 26390n

3964n

• Instead of proof, Ramanujan hints at “corresponding
theories” which he unfortunately never developed

• Used by R. W. Gosper in 1985 to compute
17, 526, 100 digits of π

Correctness of first 3 million digits showed that the series sums to 1/π in the first place.

• First proof of all of Ramanujan’s 17 series for 1/π
by Borwein brothers

Jonathan M. Borwein and Peter B. Borwein
Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity
Wiley, 1987
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The Chudnovsky series Introduction

1

π
= 12

∞∑
n=0

(−1)n(6n)!

(3n)!n!3
13591409 + 545140134n

6403203n+3/2

• Used by David and Gregory Chudnovsky in 1988 to compute
2, 260, 331, 336 digits of π

• This is the m = 163 case of the following:

For τ = (1 +
√
−m)/2,

1

π
=

√
m(J(τ)− 1)

J(τ)

∞∑
n=0

(6n)!

(3n)!n!3
(1− s2(τ))/6 + n

(1728J(τ))n
,

where

J(τ) =
E3

4(τ)

E3
4(τ)− E2

6(τ)
, s2(τ) =

E4(τ)

E6(τ)

(
E2(τ)− 3

π Im τ

)
.

THM
Chud-

novskys
(1993)
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Review: Singular moduli Introduction

f a modular function, τ0 a quadratic irrationality
=⇒ f(τ0) is an algebraic number.

FACT

• Such τ0 is fixed by some A ∈ GL2(Z):

A · τ0 =
aτ0 + b

cτ0 + d
= τ0

• Two modular functions are related by a modular equation:

P (f(A · τ), f(τ)) = 0

• Hence: Q(f(τ0)) = 0 where Q(x) = P (x, x)

Trouble: Complexity of modular equation increases very quickly.
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Review: Values of the j-function Introduction

• j(τ) = q−1 + 744 + 196884q + 21493760q2 + · · ·
• Modular polynomial ΦN ∈ Z[x, y] such that ΦN (j(Nτ), j(τ)) = 0.

ΦN is O(N3 logN) bits.RK

Φ2(x, y) = x3 + y3 − x2y2 + 24 · 3 · 31(x2 + xy2)

− 24 · 34 · 53(x2 + y2) + 34 · 53 · 4027xy

+ 28 · 37 · 56(x+ y)− 212 · 39 · 59

Φ11(x, y) = x12 + y12x11y11 + 8184x11y10 − 28278756x11y9

+ . . . several pages . . .+

+ 392423345094527654908696 . . . 100 digits . . . 000

Φ11(x, y) due to Kaltofen–Yui, 1984.
Φ10007(x, y) would require an estimated 4.8TB.

EG
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Review: Computation of singular moduli Introduction

Options for computation of singular moduli:

• via modular equations

• via PSLQ/LLL and rigorous bounds

• via class field theory (Shimura reciprocity)

Let us evaluate j(1+
√
−23
2 ).

CFT: The Galois conjugates are j(1+
√
−23
4 ), j(−1+

√
−23

4 ).(
x− j(1+

√
−23
2 )

)(
x− j(1+

√
−23
4 )

)(
x− j(−1+

√
−23

4 )
)

= x3 + 3491750x2 − 5151296875x+ 12771880859375

Degree is h(−23) = 3.

EG
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The Chudnovsky series, revisited Introduction

For τ = (1 +
√
−m)/2,

1

π
=

√
m(J(τ)− 1)

J(τ)

∞∑
n=0

(6n)!

(3n)!n!3
(1− s2(τ))/6 + n

(1728J(τ))n
.

THM
Chud-

novskys
(1993)

• Q(
√
−163) has class number one.

• Current world record:
10 trillion digits of π
by Shigeru Kondo and Alexander Yee
on a self-built desktop pc in 191 days
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Notation Introduction

• Eisenstein series of weight 2:

E2(τ) = 1− 24
∑
n>1

n e2πinτ

1− e2πinτ

• Standard Jacobi theta functions:

θ2(τ) =

∞∑
n=−∞

eπi(n+1/2)2τ , θ3(τ) =

∞∑
n=−∞

eπin
2τ , θ4(τ) =

∞∑
n=−∞

(−1)neπin
2τ

• Elliptic modulus k(τ) and complementary modulus k′(τ):

k(τ) =

(
θ2(τ)

θ3(τ)

)2

, k′(τ) =

(
θ4(τ)

θ3(τ)

)2

• Complete elliptic integral K(k) of the first kind:

2

π
K (k(τ)) = 2F1

(
1/2, 1/2

1

∣∣∣∣k2(τ)

)
= θ3(τ)2
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General form of Ramanujan-type series for 1/π Introduction

1

π
= α

∞∑
n=0

an(A+Bn)λn

• α an algebraic number

• A,B, λ preferably rational numbers

• an a rational sequence

Typically, there is a modular function x(τ) and a modular form f(τ)
such that

f(τ) =

∞∑
n=0

anx(τ)n.

In particular, the sequence an usually satisfies a linear recurrence.
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General form of Ramanujan-type series for 1/π Introduction

• Typically, there is a modular function x(τ) and a modular form f(τ)
such that

f(τ) =

∞∑
n=0

anx(τ)n.

If an = (1/2)3n
n!3

then

∞∑
n=0

anx
n = 3F2

(
1/2, 1/2, 1/2

1, 1

∣∣∣∣x) = 2F1

(
1/2, 1/2

1

∣∣∣∣t)2

with x = 4t(1− t). Thus, here,

x(τ) = 4k2(τ)(1− k2(τ)), f(τ) = θ3(τ)4.

EG

• For Sun’s 520/π series, we have a slight variation on this theme.
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The modular explanation of series for 1/π Introduction

1

π
= α

∞∑
n=0

an(A+Bn)λn (1/π)

• Modular function x(τ) and modular form f(τ) such that

f(τ) =

∞∑
n=0

anx(τ)n.

• If x(τ0) = λ, then

∞∑
n=0

an(A+Bn)λn = Af(τ0) + λB
f ′(τ0)

x′(τ0)
.

• f ′(τ) is a quasimodular form.
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Review: Quasimodular forms Introduction

• The ring M̃∗(Γ) of quasimodular forms is the differential closure of
the ring of modular forms M∗(Γ). Γ 6 SL2(Z) of finite index

Let E2 be the weight 2 Eisenstein series. Then:

M̃∗(Γ) = M∗(Γ)⊗ C[E2]

THM
Kaneko–
Zagier,
1995

τ0 quadratic irrationality, f weight 2 modular form
=⇒ E2(τ0) = r1

π + r2f(τ0) r1, r2 algebraic numbers

FACT

•
NE2(Nτ)− E2(τ)

f(τ)
is a modular function.

• E2

(
− 1
τ

)
= τ2E2(τ) +

6τ

πi
• If τ = i/

√
N then −1/τ = i/

√
N = Nτ .

proof
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Review: Quasimodular forms Introduction

τ0 quadratic irrationality, f weight 2 modular form
=⇒ E2(τ0) = r1

π + r2f(τ0) r1, r2 algebraic numbers

FACT

• Our interest is in f(τ) = θ3(τ)4.
Unfortunately, rigorous computation of the algebraic numbers r1, r2 is, at best, tedious and

relies heavily on modular equations tabulated by Ramanujan and proved by Andrews and Berndt.

Ramanujan’s multiplier of the second kind:

RN (l, k) :=
NE2(Nτ)− E2(τ)

θ23(Nτ)θ23(τ)

is an algebraic function of l := k(Nτ) and k := k(τ).

R2(l, k) = l′ + k

R3(l, k) = 1 + kl + k′l′

R5(l, k) = (3 + kl + k′l′)

√
1 + kl + k′l′

2

EG
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• Our interest is in f(τ) = θ3(τ)4.
Unfortunately, rigorous computation of the algebraic numbers r1, r2 is, at best, tedious and

relies heavily on modular equations tabulated by Ramanujan and proved by Andrews and Berndt.

Ramanujan’s multiplier of the second kind:

RN (l, k) :=
NE2(Nτ)− E2(τ)

θ23(Nτ)θ23(τ)

is an algebraic function of l := k(Nτ) and k := k(τ).

R2(l, k) = l′ + k

R3(l, k) = 1 + kl + k′l′

R5(l, k) = (3 + kl + k′l′)

√
1 + kl + k′l′

2

EG
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Summary Introduction

• Modular function x(τ) and modular form f(τ) such that

f(τ) =

∞∑
n=0

anx(τ)n.

• If τ is a quadratic irrationality, then algebraic A, B exist such that:

∞∑
n=0

an(A+Bn)x(τ)n = Af(τ) +Bx(τ)
f ′(τ)

x′(τ)
=

1

π

Main practical issues:

• identifying involved modular parametrization

• rigorous computation of values of modular functions and
combinations of quasimodular forms

Next: modular parametrization for Sun’s series
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Sun’s series for 520/π Sun’s challenge

520

π
=

∞∑
n=0

1054n+ 233

480n

(
2n

n

) n∑
k=0

(
n

k

)2(2k

n

)
(−1)k82k−n

CONJ

• Introduce:

A(x, y) =

∞∑
n=0

xn
(

2n

n

) n∑
k=0

(
n

k

)2(2k

n

)
(−1)ky2k−n

233A

(
1

480
, 8

)
+ 1054 (θxA)

(
1

480
, 8

)
=

520

π

CONJ

• Here, θx = x d
dx .
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A crucial result of Wan and Zudilin Sun’s challenge

• After some manipulation and a hypergeometric transformation:

A(x, y) =

∞∑
n=0

xn
(

2n

n

) n∑
k=0

(
n

k

)2(2k

n

)
(−1)ky2k−n

=

∞∑
k=0

(−xy)k
(

2k

k

)2

P2k

(√
1 +

4x

y

)
For (x, y) =

(
1

480
, 8
)

convergence is geometric with ratio − 64
225

.

When X and Y lie in a certain neighborhood of 1, then

∞∑
k=0

(
X − Y

4 (1 +XY )

)2k (
2k

k

)2

P2k

(
(X + Y ) (1−XY )

(X − Y ) (1 +XY )

)
=

1 +XY

2
2F1

(
1/2, 1/2

1

∣∣∣∣1−X2

)
2F1

(
1/2, 1/2

1

∣∣∣∣1− Y 2

)
.

THM
Wan

Zudilin
(2012)

A solution of Sun’s $520 challenge concerning 520/π Armin Straub
19 / 25



A crucial result of Wan and Zudilin Sun’s challenge

• After some manipulation and a hypergeometric transformation:

A(x, y) =

∞∑
n=0

xn
(

2n

n

) n∑
k=0

(
n

k

)2(2k

n

)
(−1)ky2k−n

=

∞∑
k=0

(−xy)k
(

2k

k

)2

P2k

(√
1 +

4x

y

)
For (x, y) =

(
1

480
, 8
)

convergence is geometric with ratio − 64
225

.

When X and Y lie in a certain neighborhood of 1, then

∞∑
k=0

(
X − Y

4 (1 +XY )

)2k (
2k

k

)2

P2k

(
(X + Y ) (1−XY )

(X − Y ) (1 +XY )

)
=

1 +XY

2
2F1

(
1/2, 1/2

1

∣∣∣∣1−X2

)
2F1

(
1/2, 1/2

1

∣∣∣∣1− Y 2

)
.

THM
Wan

Zudilin
(2012)

A solution of Sun’s $520 challenge concerning 520/π Armin Straub
19 / 25



Modular parametrization Sun’s challenge

• For appropriate x, y and X,Y ,

A(x, y) =
1 +XY

2
2F1

(
1/2, 1/2

1

∣∣∣∣1−X2

)
2F1

(
1/2, 1/2

1

∣∣∣∣1− Y 2

)
(©)

provided that

−xy =

(
X − Y

4 (1 +XY )

)2

, 1 +
4x

y
=

[
(X + Y ) (1−XY )

(X − Y ) (1 +XY )

]2
. (*)

Let (x, y) = ( 1
480 , 8). If τ0 = 1

2 + 3
10

√
−5 and

X = k′(τ0), Y = k′(5τ0),

then (©) holds in a neighborhood of the given values.

LEM

• If τ1 = − 1
10τ0

then X = k′(τ1), Y = k′(5τ1) satisfy (*) but not (©).
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Our singular moduli Sun’s challenge

f a modular function, τ0 a quadratic irrationality
=⇒ f(τ0) is an algebraic number.

FACT

• Here, τ0 = 1
2 + 3

10

√
−5 and

X = k′(τ0) ≈ 0.57884718− 0.81543604i,

Y = k′(5τ0) ≈ 0.99999998− 0.00021224i.

• X and Y both have minimal polynomial z8p
(
z2 + 1/z2

)
where

p(z) = z4 + 88796296z3 + 237562136z2 − 595063264z − 470492144.

• In fact:

X = i

√7− 3
√

5

4
−

√
3− 3

√
5

4

4√3−
√

5

2
−

√
1−
√

5

2

4

Y = i

√7− 3
√

5

4
−

√
3− 3

√
5

4

4√3−
√

5

2
+

√
1−
√

5

2

4
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Sun’s challenge answered Sun’s challenge

Modulo plenty of computation, we are now in a position to prove:

Sun’s conjecture is true.

520

π
=

∞∑
n=0

1054n+ 233

480n

(
2n

n

) n∑
k=0

(
n

k

)2(2k

n

)
(−1)k82k−n

THM
S-Rogers

(2012)

Sun conjectured a total of 17 series of the above shape, such as

35
√

6

4π
=
∞∑
n=0

19n+ 3

240n

(
2n

n

) n∑
k=0

(
n

k

)2(2k

n

)
62k−n.

They follow in the same way.
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Computer algebra challenges Outro

• Devise fast and rigorous methods to compute singular moduli
• for instance, for modular functions built from eta quotients

• Automatize computations with quasimodular forms such as
• representing (certain classes of) quasimodular forms as polynomials in
E2 with modular coefficients

• relating values of quasimodular forms at CM points to values of
modular forms at CM points
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Two open problems Outro

• Guillera found (and in several cases proved) Ramanujan-type series
for 1/π2 such as

∞∑
n=0

(1/2)5n
n!5

(20n2 + 8n+ 1)
(−1)n

22n
=

8

π2
.

For the proven series only WZ style proofs exist.

• As observed by van Hamme, many series for 1/π have (mostly
conjectural) p-analogues. In our case: (Sun, 2011)

∞∑
n=0

1054n + 233

480n

(
2n

n

) n∑
k=0

(
n

k

)2(2k
n

)
(−1)

k
8
2k−n

=
520

π

p−1∑
n=0

1054n + 233

480n

(
2n

n

) n∑
k=0

(
n

k

)2(2k
n

)
(−1)

k
8
2k−n ?

= p

(−1

p

)(
221 + 12

(
p

15

))
mod p

2
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THANK YOU!

• Slides for this talk will be available from my website:
http://arminstraub.com/talks

Mathew D. Rogers, Armin Straub
A solution of Sun’s $520 challenge concerning 520

π
Int. Journal of Number Theory (Vol. 9, Nr. 5, 2013, p. 1273-1288)
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