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Random walks in the plane

o We study random walks in the
plane consisting of n steps. Each
step is of length 1 and is taken
in a randomly chosen direction.

o We are interested in the distance
traveled in n steps.

Denote the probability density of
this distance by p, ().
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History and long walks

o Karl Pearson asked for p,,(z) in Nature in 1905.
This famous question coined the term random walk.
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History and long walks

o Karl Pearson asked for p,,(z) in Nature in 1905.
This famous question coined the term random walk.

o Asymptotic answer by Lord Rayleigh:

o 2_376_902/71 |
n -
o For instance, papo(x):
oo
oot
ool
0031
ocef
oot
m » ® m %
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Densities

of short walks
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Densities of short walks
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Classical results on the densities

pQ(ZL‘) = m easy
p3(z) = Re <§ K (\/(:c i 11)21(173 — :1;))) G. J.1I930e5nnett

pn(x) =/ xtJo(xt)Jy (t) dt J. C. Kluyver
0 1906
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Classical results on the densities

2

= —F— eas
pln) = e Y

B NG \/(x+1)3(3—a:)
p3(z) = Re <? K 162 G. J.1I;0e5nnett
p4($) = 7?7
pn () =/ xtJo(xt)Jy (t) dt J. C. Kluyver

0 1906

Experimentally, we observed that p4(z) satisfies an ODE.
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The Bessel integral and some difficulties

o pa(z) = /0 () JA(E) dt . Iex:
—_— -
:Zf4($,t) 0.001]

~0.001

-0.002

-0.003

-0004
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The Bessel integral and some difficulties

o pa(z) = / () JA(E) dt
0 %/_/
::f4(l‘,t)
o Creative telescoping finds A, B so that

(A+§t-B> < fa(z, 1) =0

d? d?
3 4.2
A= (z—4)(z—2)z"(x + 2)(z + 4)—dx3 + 62" (z” — 10) 102
+m(7x4—32x2+64) —ip—i—(wz—S) (ac2+8)
d* d? d d3 d?
2,3 3,2 2,2 2 2,2 2
=2 — == Lt S - 2210237 — 2067 — 1)
B ==zt I 5x°t ETERE Tx w (10z 0 )dt2
300,22 2 d d 205 2,2 2 d
+ —12 )=y 21562 — 1) =
5z°(2z7t" — 12t )dtdx z”(bz 5 )dt

— 52° (227t — 126° — 1) /t% + 2 (5z*t" — 602>t + 641" — 28> — 4)/t.
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The Bessel integral and some difficulties

o pa() 2/ wtJo(xt)Jg () dt o f1(3,1)
0 Y o2
::f4(1‘7t) 0.01]
o Creative telescoping finds A, B so that |« ” “
A+ L B) e =0 e
dt ann =
o Switching orders:
T T
A [ noa= A poa
0 0
= —B . f4((IJ,T)
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The Bessel integral and some difficulties

o pa(x) :/ wtJo(xt)Jg () dt oo f1(3,1)
0 N—— 0.002|
::f4(1‘7t) 0.001]
o Creative telescoping finds A, B so that |« N “
A+ L B) h@r =0 e
dt nmye

o Switching orders:

T T
A-/O f4(x,t)dt:/0 A faa, t)dt

= —B . f4((13, T)

o But for T'= oo the order can't be changed,
and the RHS does not converge
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Moments of random walks

o sth moment W, (s) of the density p,:

Wn(s):/ x°pp () dx:/ dx
0 [0,1]"

n
2 : e27rxkz

k=1
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Moments of random walks

o sth moment W, (s) of the density p,:

Wy(s) = /000 x°pp(z)de = /0 o

Combinatorial evaluation (Borwein-Nuyens-S-Wan, 2010)

W2t = 3 (al,.?,aj

n S

E 7r:17k2

k=
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Moments of random walks

o sth moment W, (s) of the density p,:

n S

Wh(s) = /OOO 2°pp(x) dz :/ Z 2y

[0,1]” k=

Combinatorial evaluation (Borwein-Nuyens-S-Wan, 2010)

W2t = 3 (al,.?,an)Q

o Inevitable recursions K- f(k) = f(k+1)

[(k+2)°K? — (10k® + 30k + 23) K + 9(k + 1)°] - W5(2k) = 0
[(k+2)°K® — (2k + 3)(10k® + 30k + 24) K + 64(k + 1)*] - Wa(2k) =0
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Moments of random walks

o sth moment W, (s) of the density p,:
n S

Wh(s) = /OOO 2°pp(x) dz :/ Z 2y

[0,1]” k=

Combinatorial evaluation (Borwein-Nuyens-S-Wan, 2010)

W2t = 3 (al,.?,an)Q

o Inevitable recursions K- f(k) = f(k+1)

[(k+2)°K? — (10k® + 30k + 23) K + 9(k + 1)°] - W5(2k) = 0
[(k+2)°K® — (2k + 3)(10k® + 30k + 24) K + 64(k + 1)*] - Wa(2k) =0

o Via Carlson’s Theorem these become functional equations

tric evaluations of the densities of short randor kS Armin Straub




Crashcourse on the Mellin transform

o Mellin transform F'(s) of f(x): Wy(s —1) = M [py; s]
MIf;s] =/ 257 (2) da
0
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Crashcourse on the Mellin transform

o Mellin transform F'(s) of f(x): Wy(s —1) = M [py; s]
MIf;s] =/ 257 (2) da
0

o F(s) is analytic in a strip - -
. . Thus functional equations
° Functional properties: for F'(s) translate into DEs
° M[m“f(m),s] = F(s+p) for f(il?)
o M[Dyf(x);s] = —(s —1)F(s — 1)
o M[—0,f(x);s] =sF(s)
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Crashcourse on the Mellin transform

o Mellin transform F'(s) of f(x): Wy(s —1) = M [py; s]
MIf;s] =/ 257 (2) da
0

o F(s) is analytic in a strip

o Functional properties:
o Mz f(z); ] = (s + p)
o M[D,f(x);s]=—-(s—1)F(s—1)
o M[=0,f(x);s] = sF(s)

o Poles of F(s) left of strip = asymptotics of f(z) at zero

(s+ni)n_1'+ (_;!)” ™ (log )"

Thus functional equations
for F'(s) translate into DEs

for f(x)
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Qk ] o5 5 s E]
o Wa(2k) =




s/2




o Wy(s) = (;2> E

(5 +2)Wa(s +2) — 4(s + 1)Wa(s)
[x2 (0, +1)— 4c9m] -pa(x) =

0
0
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o Wy(s) = (;2> E

(s +2)Wa(s+2) —4(s+1)Wa(s) =0
[x2 (0 4+ 1) — 46,] - pa(z) =0
o Hence: po(x) = \/4%—:132
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- ()

(s +2)Wa(s+2) —4(s+1)Wa(s) =0
[x2 (0 4+ 1) — 46,] - pa(z) =0
o Hence: po(x) = \/4%—:1:2
Wa(s) = %sil +0(1) as s — —1

1
pa(x) = = +O(z)asxz — 0"
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- ()

(s +2)Wa(s+2) —4(s+1)Wa(s) =0
[x2 (0 4+ 1) — 46,] - pa(z) =0
o Hence: po(x) = \/4%—:1:2
Wa(s) = %sil +0(1) as s — —1

1
pa(x) = = +O(z)asxz — 0"

2
T4 — 2

o Taken together: py(x) =
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o Wy(s) = (;2) E

(s +2)Wa(s +2) — 4(s + 1)Wa(s) =
[x2 (0 4+ 1) — 46,] - pa()

0
0

C Ws(s) has poles at s = —2k — 1
o Hence: py(z) = —— . . 1 (2
VA — 22 with residue ok | i
1 1
Wa(s) = P +0(1) as s — —1

1
pa(x) = = +O(z)asxz — 0"

2 L (2
o Taken together: po(z) = ———= = Z < k) o
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pergeome 0 i k
o Wi3(s) has simple poles at —2k — 2 with residue | Z—

2 Ws(2k)
71-\/3 32k

20— x\ 2k
p3(z) = —ZW3(2I<:) Y for 0 <z <1
™3 - (3)
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pergeome 0 i k
o Wi3(s) has simple poles at —2k — 2 with residue | Z—

2 Ws(2k)
71_\/_ 32k

Y x\ 2k
:F_ﬁ§wg(2k) (3) for0<a<1

k 2 .
k 2
o W3(2k) = E < ) ( ‘7) is an Apéry-like sequence

= \i) \J
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Dergeome 0 i k
o Wi3(s) has simple poles at —2k — 2 with residue | A

2 Ws(2k)
7“/3 32k

2 ~— x\ 2k
T)=—— Ws(2k) ( = for0<z<1
p3(x) Wﬁgo: 3(26) (3) or0<x
k 2 .
k 2
o W3(2k) = g () ( ‘7) is an Apéry-like sequence

= \i) \J

2v3r (1 2 .x2(9—;¢2)2>

PO =G 33 ey

o Easy to verify once found
o Holdsfor 0 <z < 3
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ang : pto 2 era fﬁ[ i\
o Wiy(s) has double poles at —2k — 2: TN

S4,k T4,k
W — i )
4(s) (542k+2)72  s+2k+2

+0(1) ass— —2k—2
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ang : pto 2 era Lf[ i\
o Wiy(s) has double poles at —2k — 2: TN

S4.k T4k

= 1 —2k —2
Way(s) (5+2k+2)2+s+2k+2+0() as s —
(e.e]
pa(x) = Z (rag — saplog(x)) x?F 1 for small z > 0
k=0
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ang : pto : era Lf[ i\
o Wiy(s) has double poles at —2k — 2: T

S4.k T4k

= 1 —2k — 2
Way(s) (5+2k+2)2+s+2k+2+0() as s —
(oo}
pa(x) = Z (rag — saplog(x)) x?F 1 for small z > 0
k=0
k 2 . .
3 Wy(2k) k 27\ (2n — 25
° PR T on2 gk Wa(zk) ]Z:% i) \i)\ n—j
T4,% known recursively Domb numbers
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ang : pto : era lﬁ[ i\
o Wiy(s) has double poles at —2k — 2: o

S4.k T4k

Wy(s) = o(1 — =2k —2
1(s) (542k+2)72  st2k+2 (1) ass
(e.e]
pa(x) = Z (rag — saplog(x)) x?F 1 for small z > 0
k=0
k 2 . .
3 Wy(2k) k 27\ (2n — 25
kT o T g% 4(2h) JZ% i) \i)\n—j
T4,% known recursively Domb numbers

Generating function for Domb numbers (Chan-Chan-Liu, 2004; Rogers, 2009)

> 2| 10822
(1—42)3

L 112
Wa(2k)2" = P23
kz_o 4(2k)z 1—4232( 1,1
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ang : pto : era lﬁ[ i\
o Wiy(s) has double poles at —2k — 2: T

S4.k T4k

= 1 —2k —2
Way(s) (s+2k—|—2)2+3+2k+2+0() as s —
(e.e]
pa(x) = Z (rag — saplog(x)) x?F 1 for small z > 0
k=0
k 2 . .
3 Wy(2k) k 27\ (2n — 25
kT o T g% 4(2h) JZ% i) \i)\n—j
T4,% known recursively Domb numbers
301 9log2 1
Wa(s) 212 (s + 2)2 272 s+ 2 +O(1) ass—
3 9log 2
pa(z) = —2—2xlog(a:) + 20g2 z4+0(x3) asz— 0"
T s

Armin Straub




(s +4)*S* — 4(s + 3)(55 + 30s + 48)S* + 64(s + 2)°] - Wu(s) =0
translates into A4 - pa(x) = 0 where Ay is

Ay =240 +1)3 — 42%0(560% + 3) + 64( — 1)°
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(s +4)*S* — 4(s + 3)(55 + 30s + 48)S* + 64(s + 2)°] - Wu(s) =0
translates into A4 - pa(x) = 0 where Ay is

Ay =240 +1)3 — 42%0(560% + 3) + 64( — 1)°
= (z —4)(z — 2)23(z 4+ 2)(x +4) D2 + 62! (:U2 - 10) D?
+ 2 (Ta* — 322 4+ 64) D, + (2% — 8) (2 + 8)
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(s +4)*S* — 4(s + 3)(55 + 30s + 48)S* + 64(s + 2)°] - Wu(s) =0
translates into A4 - pa(x) = 0 where Ay is
Ay =240 +1)3 — 42%0(560% + 3) + 64( — 1)°

= (z —4)(z — 2)23(z 4+ 2)(x +4) D2 + 62! (:U2 - 10) D?
+z (72" — 3227 4 64) D, + (27 — 8) (2 +8)

Care needed!

pa(r) ~ CvV/4—x as x — 4. Thus pj is not locally integrable and
does not have a Mellin transform in the classical sense.
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Theorem (Borwein-S-Wan-Zudilin, 2011)

2 V16 — 22 111
For2 <z <4, p4(x)=FTx3F2<2 22

o Again, easily (if tediously) provable once found

ions of the short random Armin Strau




Theorem (Borwein-S-Wan-Zudilin, 2011)

3R, (R

For2 <z <4, pa(x) =

2 T

o Again, easily (if tediously) provable once found

o Quite marvelously, as first observed numerically:

Theorem (Borwein-S-Wan-Zudilin, 2011)

2 V16 — 22 11 10(16 —42)°
For0 <z <4, pdm)z;TRegFg(Qézzz (108334) .
676

tric evaluations of the densities of short rand. Armin Straub




p4 in hypergeometric form — motivation

1 5305
F ) )
1—4z° 2( 1,1

[6422(0 +1)% — 22(20 + 1)(56° + 50 +2) + 6°] - y(2) =0  (DE)

10822
(1—42)3

] yo(z) =

) is the analytic solution of
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p4 in hypergeometric form — motivation
11 2
T (55 3

[6422(0 +1)% — 22(20 + 1)(56° + 50 +2) + 6°] - y(2) =0  (DE)

] yo(z) =

is the analytic solution of
1 -4z

3x x2
P4($) = ) Y1 a

where y;(z) solves (DE) and y1(2) — yo(2) log(z) € 2Q|[[#]]
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p4 in hypergeometric form — motivation
11 2
T (55 3

[6422(0 +1)% — 22(20 + 1)(56° + 50 +2) + 6°] - y(2) =0  (DE)

] yo(z) =

is the analytic solution of
1 -4z

3x x2
P4($) = ) Y1 a

where y;(z) solves (DE) and y1(2) — yo(2) log(z) € 2Q|[[#]]

_ 22 1 10822
oAsx—>4thenz—64—>4andt—m—>oo
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p4 in hypergeometric form — motivation

1 1l 10822
— F 372
° wlz) = g8k ( (1 42)3

6422(0 4+ 1)® — 22(20 + 1) (56> + 50 + 2) + 6°] - y(z) =0  (DE)
[ ]

3x z2
p(@)=—gm vl 6

where y;(z) solves (DE) and y1(2) — yo(2) log(z) € 2Q|[[#]]

> is the analytic solution of

° Asa:—>4thenz———>4 and t = (119%53 — 00
11 2
o Basis at oo for the hypergeometric equation of 3 (3’1213 t):
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ps and its modularity

Theorem (Chan-Zudilin, 2010)

\ (12 _ ntonaey

n(7)°n(37)° n(27)?n(67)>
e 7 is the Dedekind eta function: q=e*T
,]7(7_) _ q1/24 H(l _ qn) _ q1/24 Z (_1)nqn(3n+1)/2
n=1 n=-—0o0
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ps and its modularity

Theorem (Chan-Zudilin, 2010)

\ (12 _ ntonaey

n(7)8n(37)° n(27)2(67)2
e 7 is the Dedekind eta function: L
n(r) = ¢*/* H(l —q") = ¢/ Z (—1)gn@nrD/2
n=1 n=—o0

If f(7) is a modular form and g(7) a modular function.
Then the function y(z) defined by y(g(7)) = f(7) satisfies a linear DE.
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ps and its modularity

Theorem (Chan-Zudilin, 2010)

\ (12 _ ntonaey

n(7)8n(37)° n(27)2(67)2
e 7 is the Dedekind eta function: L
n(r) = ¢*/* H(l —q") = ¢/ Z (—1)gn@nrD/2
n=1 n=—o0

If f(7) is a modular form and g(7) a modular function.
Then the function y(z) defined by y(g(7)) = f(7) satisfies a linear DE.
o Forr=—-1/2+ 4y and y > 0:

n(27)3n(67)%\  6(27 4+ 1)
P (82 n(r)n(37)? > T

n(T)n(27)n(37)n(67)
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ps and its modularity

Theorem (Chan-Zudilin, 2010)

\ (12 _ ntonaey

n(7)8n(37)° n(27)2(67)2
e 7 is the Dedekind eta function: L
n(r) = ¢*/* H(l —q") = ¢/ Z (—1)gn@nrD/2
n=1 n=—o0

If f(7) is a modular form and g(7) a modular function.
Then the function y(z) defined by y(g(7)) = f(7) satisfies a linear DE.

o Forr=—-1/2+ 4y and y > 0: T:L/?’_

E ! gives py(1)
7)3n(67)3 T
(20O ) = ST s aganatannton)
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Hypergeometric formulae summarized

p2(x) 5 ps(@) : pa(x)
O
)= ——— eas
P2 Y Yy
2v/3 T 1 21,2 (9—1’2)2
— F|33 lassical
P =S Gyt ( L E ) with 3 i
2 V16 — 22 111116 - a2)°
pa(z) = — V27T Re shy | 2,202 ( 4) new
T x 56 108z BSWZ
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General problem

Research problem

Given a linear differential equation automatically find its
“hypergeometric-type” solutions.

o Promising work by Mark van Hoeij and his group

ations of the densities of short ra Armin Straub




Densities in general

Theorem (Borwein-S-Wan-Zudilin, 2011)

o The density p,, satisfies a DE of order n — 1.
o p, Is real analytic except at 0 and the integers n,n —2,n —4,....

The second statement relies on an explicit recursion by Verrill (2004) as
well as the combinatorial identity

Z H(n_Qmi)z = Z Hai(n—i—l—ai).

o<my,..., mj<n/2 =1 1<ay ;... ajsn 3=1
mi<mijy aSeip1—2

First proven by Djakov-Mityagin (2004).
Direct combinatorial proof by Zagier.

metric evaluations of the densities of short randor kS Armin Straub




035}

0.30F

0.25

0.20

0.15

0.10

0.05}

D5 starting startlingly straight

ps(x) = /000 wtJo(xt)J5 () dt

1 2 3 4 5

... the graphical construction, however carefully reinvestigated, did not
permit of our considering the curve to be anything but a straight

line. .. Even if it is not absolutely true, it exemplifies the extraordinary power
of such integrals of J products to give extremely close approximations to
such simple forms as horizontal lines.

Karl Pearson, 1906
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D5 starting startlingly straight

0.35F

030

0251

ps(x) = /000 wtJo(xt)J5 () dt

020

0151
0.101

0.05F

1 2 3 4 5

... the graphical construction, however carefully reinvestigated, did not
permit of our considering the curve to be anything but a straight

line. .. Even if it is not absolutely true, it exemplifies the extraordinary power
of such integrals of J products to give extremely close approximations to
such simple forms as horizontal lines.

Karl Pearson, 1906

ps(x) = 0.32993z+0.00661672° +0.000262332° +-0.0000141192" + O(2?)

ions of the densities of short random Armin Strau




o Ws(s) has simple poles at —2k — 2 with residue r5 j,

o
o Hence: p5(x) = Zr&k p2k
k=0

Armin Straub




3 E ow aba [ i i
o Ws(s) has simple poles at —2k — 2 with residue 75 j, § AN

o Hence: ps(x Zr k p2k
Surprising bonus of the modularity of p4

VB T(E)IT(EITEIT(E)
40 md

> 13 2 1
T = —7 —_ —
P17 995 20 Bripg g

r50 = pa(l) =

o Other residues given recursively
e ps solves the DE

[2%(0 + 1)* — (350" + 4207 + 3) + 2%(259(0 — 1)* + 104(6 — 1)?)
—(15(6 = 3)(0 = 1))*] - ps(x) = 0
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Summary of the ingredients

Carlson’s Theorem

N

Mellin Transform

N

Combinatorics

Complex Analysis

Analysis

even moments
difference equations
generating functions

complex moments
functional equations
residues .

T

-

-7 density functions

,

. differential equations
4

asymptotics

Number Theory

modularity
Chowla-Selberg formula

Armin




THANK YOU!

o Slides for this talk will be available from my website:
http://arminstraub.com/talks

J. Borwein, A. Straub, J. Wan, W. Zudilin
Densities of short uniform random walks
Canadian Journal of Mathematics — to appear
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