
SHORT WALK ADVENTURES

ARMIN STRAUB AND WADIM ZUDILIN

To the memory of Jon Borwein, who convinced us that a short walk can be adventurous

Abstract. We review recent development of short uniform random walks, with a
focus on its connection to (zeta) Mahler measures and modular parametrisation of
the density functions. Furthermore, we extend available “probabilistic” techniques
to cover a variation of random walks and reduce some three-variable Mahler mea-
sures, which are conjectured to evaluate in terms of L-values of modular forms, to
hypergeometric form.

0. Introduction

At some stages of our careers we were approached by Jon Borwein to collaborate
on a theme that sounded rather off topic to us, who had interests in number theory,
combinatorics and related special functions. Somewhat unexpectedly, the theme has
become a remarkable research project with several outcomes (including [9, 10, 11],
to list a few), a project which we continue to enjoy after the sudden loss of Jon. . .
This note serves as a summary to our recent discoveries that certain “probabilistic”
techniques apply usefully to tackling difficult problems on the border of analysis,
number theory and differential equations; in particular, in evaluating multi-variable
Mahler measures. Our principal novelties are given in Theorems 1–3; these include
hypergeometric reduction of the Mahler measures of the three-variable polynomials

1 + x1 + x2 + x3 + x2x3 and (1 + x1)
2 + x2 + x3,

as well as the (hypergeometric) factorisation of a related differential operator for the
Apéry-like sequence

n∑
k=0

(
n

k

)2(
2k

k

)2

, where n = 0, 1, 2, . . . .

Echoing Jon’s “a short walk can be beautiful” [8], we add that “a short walk can
be adventurous.”
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1. Uniform random walks

An N -step uniform random walk is a planar walk that starts at the origin and
consists of N steps of length 1 each taken into a uniformly random direction. Let
XN be the distance to the origin after these N steps. The s-th moments WN(s) of
XN can be computed [11] via the formula

WN(s) =

∫
· · ·
∫
[0,1]N

|e2πiθ1 + · · ·+ e2πiθN |s dθ1 · · · dθN

=

∫
· · ·
∫
[0,1]N−1

|1 + e2πiθ1 + · · ·+ e2πiθN−1|s dθ1 · · · dθN−1,

and are related to the (probability) density function pN(x) of XN via

WN(s) =

∫ ∞
0

xspN(x) dx =

∫ N

0

xspN(x) dx.

That is, pN(x) can then be obtained as the inverse Mellin transform of WN(s− 1).
Finally, note that the even moments W3(2n) and W4(2n) (which are, clearly, positive
integers) can be identified with the odd moments of I0(t)K0(t)

2 and I0(t)K0(t)
3,

respectively, where I0(t) and K0(t) denote the modified Bessel functions of the first
and second kind. Namely, for n = 1, 2, . . . we have [6]

W3(2n) =
32n+3/2

π 22n n!2

∫ ∞
0

t2n+1I0(t)K0(t)
2 dt

and

W4(2n) =
42n+2

π2 n!2

∫ ∞
0

t2n+1I0(t)K0(t)
3 dt.

2. Zeta Mahler measures

For a non-zero Laurent polynomial P (x1, . . . , xN) ∈ C[x±11 , . . . , x±1N ], its zeta
Mahler measure [3] is defined by

Z(P ; s) =

∫
· · ·
∫
[0,1]N

|P (e2πiθ1 , . . . , e2πiθN )|s dθ1 · · · dθN ,

and its logarithmic Mahler measure is

m(P ) =
dZ(P ; s)

ds

∣∣∣∣
s=0

=

∫
· · ·
∫
[0,1]N

log |P (e2πiθ1 , . . . , e2πiθN )| dθ1 · · · dθN .

A straightforward comparison of the two definitions reveals that

WN(s) = Z(x1 + · · ·+ xN ; s) = Z(1 + x1 + · · ·+ xN−1; s)

and

W ′
N(0) = m(x1 + · · ·+ xN) = m(1 + x1 + · · ·+ xN−1) =

∫ N

0

pN(x) log x dx, (1)
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where the derivative is with respect to s. The latter Mahler measures are known as
linear Mahler measures. The evaluations

W ′
2(0) = 0, W ′

3(0) = L′(χ−3;−1) =
3
√

3

4π
L(χ−3; 2), W ′

4(0) = −14ζ ′(−2) =
7ζ(3)

2π2
,

are known [24], while the following conjectural evaluations, due to Rodriguez-Villegas
[13] and verified to several hundred digits [5], remain open:

W ′
5(0)

?
= −L′(f3;−1) = 6

(√
15

2π

)5

L(f3; 4),

W ′
6(0)

?
= −8L′(f4;−1) = 3

(√
6

π

)6

L(f4; 5),

where

f3(τ) = η(τ)3η(15τ)3 + η(3τ)3η(5τ)3 and f4(τ) = η(τ)2η(2τ)2η(3τ)2η(6τ)2

are cusp eigenforms of weight 3 and 4, respectively. Here and in what follows,
Dedekind’s eta function

η(τ) = q1/24
∞∏
m=1

(1− qm) =
∞∑

n=−∞

(−1)nq(6n+1)2/24, where q = e2πiτ ,

serves as a principal constructor of modular forms and functions. No similar formulae
are known for W ′

N(0) when N ≥ 7, though the story continues at a different level —
see [14, 30, 31] for details.

3. Generic two-step random walks

Let X1 and X2 be two (sufficiently nice, independent) random variables on [0,∞)
with probability density p1(x) and p2(x), respectively, and let θ1 and θ2 be uniformly
distributed on [0, 1]. Then X = e2πiθ1X1+e2πiθ2X2 describes a two-step random walk
in the plane with a first step of length X1 and a second step of length X2. As in [10,
eq. (3-3)], an application of the cosine rule shows that the s-th moment of |X| is

W (s) = E(|X|s) =

∫ ∞
0

∫ ∞
0

gs(x, y)p1(x)p2(y) dx dy,

where

gs(x, y) =
1

π

∫ π

0

(x2 + y2 + 2xy cos θ)s/2 dθ.

Observe that

dgs(x, y)

ds

∣∣∣∣
s=0

=
1

π

∫ π

0

log
√
x2 + y2 + 2xy cos θ dθ = max{log |x|, log |y|},

so that, in particular,

Lemma 1. We have

W ′(0) = E(log |X|) =

∫ ∞
0

∫ ∞
0

p1(x)p2(y) max{log x, log y} dy dx.
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Alternative equivalent expressions, that will be useful in what follows, include

E(log |X|) =

∫ ∞
0

∫ x

0

p1(x)p2(y) log x dy dx+

∫ ∞
0

∫ ∞
x

p1(x)p2(y) log y dy dx

= E(logX1) +

∫ ∞
0

∫ ∞
x

p1(x)p2(y)(log y − log x) dy dx

= E(logX2) +

∫ ∞
0

∫ x

0

p1(x)p2(y)(log x− log y) dy dx. (2)

4. Linear Mahler measures

Let N,M be integers such that N > M > 0. By decomposing an N -step random
walk into two walks with N −M and M steps, and applying Lemma 1 in the form
(2), we find that

W ′
N(0) = W ′

M(0) +

∫ N−M

0

pN−M(x)

(∫ x

0

pM(y)(log x− log y) dy

)
dx.

This formula, together with known formulae for the densities [11], like p1(x) =
δ(x− 1) (the Dirac delta function) and p2(x) = 2/(π

√
4− x2) for 0 < x < 2, allows

one to produce new expressions for linear Mahler measures. Indeed, taking M = 1
we get

W ′
N(0) =

∫ N−1

1

pN−1(x) log x dx (3)

(which can be also derived using Jensen’s formula), while M = 2 results in

W ′
N(0) =

∫ N−2

2

pN−2(x) log x dx+
1

π

∫ 2

0

pN−2(x)x · 3F2

(
1
2
, 1

2
, 1

2
3
2
, 3

2

∣∣∣∣ x24
)

dx (4)

(see also [20, eq. (2.1)]). Here, and in what follows, the hypergeometric notation

mFm−1

(
a1, a2, . . . , am

b2, . . . , bm

∣∣∣∣ z) =
∞∑
n=0

(a1)n(a2)n · · · (am)n
(b2)n · · · (bm)n

zn

n!

is used, where

(a)n =
Γ(a+ n)

Γ(a)
=

{
a(a+ 1) · · · (a+ n− 1), for n ≥ 1,

1, for n = 0,

denotes the Pochhammer symbol (the rising factorial). Note that we deduce (4)
from ∫ x

0

p2(y)(log x− log y) dy =
x

π
· 3F2

(
1
2
, 1

2
, 1

2
3
2
, 3

2

∣∣∣∣ x24
)
,

which is valid if 0 ≤ x ≤ 2.
Equations (3) and (4) and the formula

p4(x) =
2
√

16− x2
π2x

Re 3F2

(
1
2
, 1

2
, 1

2
5
6
, 7

6

∣∣∣∣ (16− x2)3

108x4

)
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obtained in [11, Theorem 4.9], provide the formulae

W ′
5(0) =

7ζ(3)

2π2
− 1

π2

∫ 1

0

√
16− x2 Re 3F2

(
1
2
, 1

2
, 1

2
5
6
, 7

6

∣∣∣∣ (16− x2)3

108x4

)
d(log2 x)

and

W ′
6(0) =

7ζ(3)

2π2
− 1

π2

∫ 2

0

√
16− x2 Re 3F2

(
1
2
, 1

2
, 1

2
5
6
, 7

6

∣∣∣∣ (16− x2)3

108x4

)
d(log2 x)

+
2

π3

∫ 2

0

√
16− x2 Re 3F2

(
1
2
, 1

2
, 1

2
5
6
, 7

6

∣∣∣∣ (16− x2)3

108x4

)
· 3F2

(
1
2
, 1

2
, 1

2
3
2
, 3

2

∣∣∣∣ x24
)

dx.

These single integrals can be used to numerically confirm the conjectural evaluations
of W ′

5(0) and W ′
6(0).

A similar application of Lemma 1, upon decomposing a 6-step walk into two walks
with 3 steps, yields the alternative reduction

W ′
6(0) = 2

∫ 3

0

p3(x) log x

(∫ x

0

p3(y) dy

)
dx, (5)

where [11]

p3(x) =
2
√

3x

π(3 + x2)
· 2F1

(
1
3
, 2

3
1

∣∣∣∣ x2(9− x2)2(3 + x2)3

)
.

We discuss this formula further in Section 5.
Finally, we mention that equation (3) and a modular parametrisation of p4(x)

(which we indicate in Section 6) were independently cast in [23] to produce a double
L-value expression for W ′

5(0).

5. Modular parametrisation of p3(x) and related formulae

Note that formula (5) can be written as

W ′
6(0) =

∫ 3

0

log x d(P3(x)2) = log 3−
∫ 3

0

P3(x)2
dx

x
,

featuring the cumulative density function

P3(x) =

∫ x

0

p3(y) dy.

The related modular parametrisation of p3(x) is given by

x = x(τ) = 3
η(τ)2η(6τ)4

η(2τ)4η(3τ)2
: (i∞, 0)→ (0, 3),

so that

p3(x) =
2
√

3

π

η(2τ)2η(6τ)2

η(τ)η(3τ)
, dx = 3πi

η(τ)6η(3τ)2η(6τ)2

η(2τ)6
dτ

and

P3(x) = 6i
√

3

∫ τ

i∞

η(τ)5η(3τ)η(6τ)4

η(2τ)4
dτ
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is the anti-derivative of a weight 3 holomorphic Eisenstein series

η(τ)5η(3τ)η(6τ)4

η(2τ)4
= E3,χ−3(τ)− 8E3,χ−3(2τ),

where

E3,χ−3(τ) =
η(3τ)9

η(τ)3
=

∞∑
m,n=1

(
−3

m

)
n2qmn, χ−3(m) =

(
−3

m

)
=
e2πim/3 − e−2πim/3

i
√

3
.

Though the anti-derivative P3(x),

P3(x) =
3
√

3

π

( ∞∑
m,n=1

(
−3

m

)
n

m
qmn − 4

∞∑
m,n=1

(
−3

m

)
n

m
q2mn

)

=
9i

π
log

∞∏
n=1

(
(1− e2πi/3q2n)4(1− e−2πi/3qn)

(1− e−2πi/3q2n)4(1− e2πi/3qn)

)n
,

is not considered to be sufficiently “natural”, it shows up as the elliptic dilogarithm
thanks to Bloch’s formula; see [17, 19] for the details. Note that

E3,χ−3

(
− 1

3τ

)
=

iτ 3

3
√

3
Ẽ3,χ−3(τ), Ẽ3,χ−3(τ) =

η(τ)9

η(3τ)3
= 1− 9

∞∑
m,n=1

(
−3

n

)
n2qmn;

and, in addition, we have

1

2πi

dx/dτ

x
=

1

2

(
η(τ)2η(3τ)2

η(2τ)η(6τ)

)2

=
1

18

(
E1,χ−3(τ)− 4E1,χ−3(4τ)

)2
=

1

54τ 2

(
E1,χ−3

(
− 1

12τ

)
− E1,χ−3

(
− 1

3τ

))2

,

where

E1,χ−3(τ) = 1 + 6
∞∑

m,n=1

(
−3

m

)
qmn.

6. Modular computation for W ′
5(0) and W ′

6(0)

As (partly) shown in [11] the density p4(x) can be parameterised as follows (we
make a shift of τ by half):

p4(x(τ)) = −Re

(
2i(1 + 6τ + 12τ 2)

π
p(τ)

)
,

where

p(τ) =
η(2τ)4η(6τ)4

η(τ)η(3τ)η(4τ)η(12τ)
and x(τ) =

(
2η(τ)η(3τ)η(4τ)η(12τ)

η(2τ)2η(6τ)2

)3

.

The path for τ along the imaginary axis from 0 to i/(2
√

3) (or from i∞ to i/(2
√

3))
corresponds to x ranging from 0 to 2, while the path from i/(2

√
3) to −1/4+i/(4

√
3)

along the arc centred at 0 corresponds to the real range (2, 4) for x. (The arc admits
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the parametrisation τ = eπiθ/(2
√

3), 1/2 < θ < 5/6.) Note that x(i/(2
√

15)) = 1
and

p4(x(τ)) =


−2i · 6τ

π
p(τ), for τ on the imaginary axis,

−2i(1 + 6τ + 12τ 2)

π
p(τ), for τ on the arc,

and

−2i(1 + 6τ + 12τ 2)

π
p(τ) =

2
√

16− x2
π2x

· 3F2

(
1
2
, 1

2
, 1

2
5
6
, 7

6

∣∣∣∣ (16− x2)3

108x4

)
(this is a general form of [11, Theorem 4.9]). Formulas (1), (3) and (4) reduce the
conjectural evaluations of W ′

5(0) and W ′
6(0) to the following ones:

7ζ(3)

2π2
+ L′(f3;−1)

?
=

12

π

∫ 1/(2
√
15)

0

yp(iy) log x(iy) dx(iy)

and

7ζ(3)

2π2
+ 8L′(f4;−1)

?
=

12

π

∫ 1/(2
√
3)

0

yp(iy) log x(iy) dx(iy)

− 12

π2

∫ 1/(2
√
3)

0

yp(iy)x(iy) · 3F2

(
1
2
, 1

2
, 1

2
3
2
, 3

2

∣∣∣∣ x(iy)2

4

)
dx(iy).

Furthermore, note that the Atkin–Lehner involutions w12 : τ 7→ −1/(12τ) and
w6 : τ 7→ (6τ − 5)/(12τ − 6) act on the modular function x(τ) as follows: x(w12τ) =
x(τ) and x(w6τ) = −8/x(τ), and we also have p(w12τ) = −τ 2p(τ). The point
i/(2
√

3) is fixed by w12. Thus, the change of variable y 7→ 1/(12y) leads to∫ 1/(2
√
3)

0

yp(iy) log x(iy) dx(iy) = −
∫ ∞
1/(2
√
3)

yp(iy) log x(iy) dx(iy).

7. Mahler measures related to a variation of random walk

In [23] the Mahler measures m(1 +x1 +x2) and m(1 +x1 +x2 +x3) are computed
using the modular parametrisations of

∞∑
n=0

W3(2n)zn =
∞∑
n=0

CT
(
(1 + x1 + x2)(1 + x−11 + x−12 )

)n
zn

and
∞∑
n=0

W4(2n)zn =
∞∑
n=0

CT
(
(1 + x1 + x2 + x3)(1 + x−11 + x−12 + x−13 )

)n
zn,

where CT(L) denotes the constant term of a Laurent polynomial L ∈ Z[x±1 , x
±
2 , . . .].

Note that the Picard–Fuchs linear differential equations for the two generating func-
tions give rise to the ones for the densities p3(x) and p4(x) together with their ex-
plicit hypergeometric and modular expressions (see [11, eq. (3.2) and Remark 4.10]),
though it remains unclear whether the latter information can be used to compute
W ′
N(0) in (1) for N = 3, 4. This is itself an interesting question to not only assist in
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computing of W ′
N(0) for N > 4 but also in relation with another famous conjecture

of Boyd:

m(1 + x1 + x2 + x3 + x2x3)
?
= −2L′(f2;−1) =

152

4π4
L(f2; 3) = 0.4839979734 . . . , (6)

where f2(τ) = η(τ)η(3τ)η(5τ)η(15τ).
In analogy with the case of linear Mahler measures, we define

W̃ (s) =

∫∫∫
[0,1]3
|1 + e2πiθ1 + e2πiθ2 + e2πiθ3 + e2πi(θ2+θ3)|s dθ1 dθ2 dθ3

= Z(1 + x1 + x2 + x3 + x2x3; s)

as the s-th moment of a random 5-step walk for which the direction of the final step
is completely determined by the two previous steps. Then the even moments

W̃ (2n) = CT
(
(1 + x1 + x2 + x3 + x2x3)(1 + x−11 + x−12 + x−13 + (x2x3)

−1)
)n

=
n∑
k=0

(
n

k

)2(
2k

k

)2

satisfy a rather lengthy recurrence equation, which is equivalent to a Picard–Fuchs
differential equation of order 4. The latter splits into the tensor product of two
differential equations of order 2 and, with some effort, we obtain the following result.

Theorem 1. We have

∞∑
n=0

W̃ (2n)

(
t

(4 + t)(1 + 4t)

)n
=

(4 + t)(1 + 4t)

4(1 + 4t+ t2)
2F1

(
1
2
, 1

2
1

∣∣∣∣ t(4 + t)

1 + 4t+ t2

)
· 2F1

(
1
2
, 1

2
1

∣∣∣∣ t2

1 + 4t+ t2

)
and, more generally,

b

(b+ t)(1 + bt)

∞∑
n=0

(
t

(b+ t)(1 + bt)

)n n∑
k=0

(
n

k

)2(
2k

k

)2(
b

4

)2k

= 2F1

(
1
2
, 1

2
1

∣∣∣∣ −t(b+ t)

)
· 1

(1 + bt)1/2
2F1

(
1
2
, 1

2
1

∣∣∣∣ − t2

1 + bt

)
=

1

1 + bt+ t2
2F1

(
1
2
, 1

2
1

∣∣∣∣ t(b+ t)

1 + bt+ t2

)
· 2F1

(
1
2
, 1

2
1

∣∣∣∣ t2

1 + bt+ t2

)
.

Proof. Once a factorisation of this type is written down, it is a computational routine
to prove it. In other words, a principal issue is discovering such a formula rather
than proving it. Our original discovery of Theorem 1 involved a lot of experimental
mathematics; however, we later realised that it is deducible from known formulae
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as follows:
∞∑
n=0

zn
n∑
k=0

(
n

k

)2(
2k

k

)2

xk =
∞∑
k=0

(
2k

k

)2

xk
∞∑
m=0

(
k +m

k

)2

zk+m

=
∞∑
k=0

(
2k

k

)2

(xz)k 2F1

(
k + 1, k + 1

1

∣∣∣∣ z)

=
∞∑
k=0

(
2k

k

)2
(xz)k

(1− z)k+1 2F1

(
−k, k + 1

1

∣∣∣∣ − z

1− z

)

=
1

1− z

∞∑
k=0

(
2k

k

)2(
xz

1− z

)k
· Pk
(

1 + z

1− z

)
,

where Pk denotes the k-th Legendre polynomial, and the latter generating function
is a particular instance of the Bailey–Brafman formula [15, 34]. �

We remark that, using the general Bailey–Brafman formula and its generalisation
from [29], the proof above extends to the factorisation of the two-variable generating
functions

∞∑
n=0

zn
n∑
k=0

(
n

k

)2
(s)k(1− s)k

k!2
xk

as well as of
∞∑
n=0

zn
∑
k

(
n

2k

)2(
2k

k

)2

xk and
∞∑
n=0

zn
∑
k

(
n

3k

)2
(3k)!

k!3
xk,

and even of
∞∑
n=0

zn
n∑
k=0

(
n

k

)2

uk x
k

for an Apéry-like sequence u0, u1, u2, . . . .

Furthermore, we expect that Theorem 1 can lead to a hypergeometric expression
for the density function p̃(x) (piecewise analytic, with finite support on the interval

0 < x < 5), which is the inverse Mellin transform of W̃ (s− 1), hence to the Mahler
measure evaluation

m(1 + x1 + x2 + x3 + x2x3) = W̃ ′(0) =

∫ ∞
0

p̃(x) log x dx =

∫ 5

0

p̃(x) log x dx.

On the other hand, the reduction technique of Sections 3 and 4 suggests a different

approach to computing W̃ ′(0), resulting in the following hypergeometric evaluation
of the Mahler measure.

Theorem 2. We have

m(1 + x1 + x2 + x3 + x2x3) = − 1

2π

∫ 1

0
2F1

(
1
2
, 1

2
1

∣∣∣∣ 1− x2

16

)
log x dx.
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Proof. Define a related density p̂(x) by∫ 4

0

xsp̂(x) dx = Ŵ (s) =

∫∫
[0,1]2
|1 + e2πiθ2 + e2πiθ3 + e2πi(θ2+θ3)|s dθ2 dθ3

= W2(s)
2 =

Γ(1 + s)2

Γ(1 + s/2)4
.

By an application of the Mellin transform calculus, we find that, for 0 < x < 4,

p̂(x) =
1

2π
· 2F1

(
1
2
, 1

2
1

∣∣∣∣ 1− x2

16

)
.

Then it follows from Lemma 1 that

W̃ ′(0) =

∫ 4

1

p̂(x) log x dx = −
∫ 1

0

p̂(x) log x dx,

where we use the evaluation∫ 4

0

p̂(x) log x dx = m(1 + x2 + x3 + x2x3) = m(1 + x2) + m(1 + x3) = 0. �

The above proof extends to the general formula

m(1 + bx1 + x2 + x3 + x2x3) = log b

∫ b

0

p̂(x) dx+

∫ 4

b

p̂(x) log x dx

=
1

2π

∫ b

0
2F1

(
1
2
, 1

2
1

∣∣∣∣ 1− x2

16

)
log

b

x
dx

for 0 < b ≤ 4. A related computation

m(1 + bx1 + x2 + x3 + x2x3) = log b+
8

π2

∫ 4

b

arccos(b/x) log(x/(2
√
b))√

16− x2
dx

valid for 0 < b ≤ 4 was given by J. Wan [27]; he also pointed out that m(1 + bx1 +
x2 + x3 + x2x3) = log b for b > 4 follows from Jensen’s formula.

The left-hand side of another Mahler measure conjecture [13]

m((1 + x1)
2 + x2 + x3)

?
= −L′(f̃2;−1) =

72

π4
L(f̃2; 3) = 0.7025655062 . . . ,

where f̃2(τ) = η(2τ)η(4τ)η(6τ)η(12τ) is a cusp form of level 24, can be treated by a
similar reduction, using that the densities for (1+x1)

2 and x2+x3 are p2(t
1/2)/(2t1/2)

on [0, 4] and p2(t) on [0, 2], respectively. The final result is the elegant formula

m((1 + x1)
2 + x2 + x3) =

2G

π
+

2

π2

∫ 1

0

arcsin(1− x) arcsinx
dx

x
, (7)

where G is Catalan’s constant, and, with some further work, we can express the
right-hand side hypergeometrically.
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Theorem 3. We have

m((1 + x1)
2 + x2 + x3) =

8Γ(3
4
)2

π5/2 5F4

(
1
4
, 1

4
, 1

4
, 3

4
, 3

4
1
2
, 5

4
, 5

4
, 5

4

∣∣∣∣ 1

4

)
+

Γ(1
4
)2

54π5/2 5F4

(
3
4
, 3

4
, 3

4
, 5

4
, 5

4
3
2
, 7

4
, 7

4
, 7

4

∣∣∣∣ 1

4

)
.

Proof. Notice that, for 0 < x < 1,

arcsin(1− x) =
π

2
− arccos(1− x) =

π

2
−
√

2x 2F1

(
1
2
, 1

2
3
2

∣∣∣∣ x2
)
,

and that, for n > −1/2,∫ 1

0

xn−1/2 arcsinx dx =

√
π

2n+ 1

(√
π −

Γ(n
2

+ 3
4
)

Γ(n
2

+ 5
4
)

)
.

Therefore,∫ 1

0

arcsin(1− x) arcsinx
dx

x
=
π

2

∫ 1

0

arcsinx
dx

x
− π
√

2
∞∑
n=0

(1
2
)2n

n! (3
2
)n(2n+ 1)

1

2n

+
√

2π
∞∑
n=0

(1
2
)2nΓ(n

2
+ 3

4
)

n! (3
2
)n(2n+ 1) Γ(n

2
+ 5

4
)

1

2n
.

From this and (7) we deduce

m((1 + x1)
2 + x2 + x3) =

2G

π
+

log 2

2
− 2
√

2

π
3F2

(
1
2
, 1

2
, 1

2
3
2
, 3

2

∣∣∣∣ 1

2

)
+

8
√

2 Γ(3
4
)

π3/2Γ(1
4
)

5F4

(
1
4
, 1

4
, 1

4
, 3

4
, 3

4
1
2
, 5

4
, 5

4
, 5

4

∣∣∣∣ 1

4

)
+

√
2 Γ(1

4
)

54π3/2Γ(3
4
)
5F4

(
3
4
, 3

4
, 3

4
, 5

4
, 5

4
3
2
, 7

4
, 7

4
, 7

4

∣∣∣∣ 1

4

)
.

It remains to use

G+
1

4
π log 2 =

√
2 3F2

(
1
2
, 1

2
, 1

2
3
2
, 3

2

∣∣∣∣ 1

2

)
(see [1, Entry 30]) and Γ(1

4
)Γ(3

4
) = π

√
2. �

8. Conclusion

A goal of this final section is to highlight relevance for and links with other research
and open problems.

The (hypergeometric) factorisation in Theorem 1 and similar results outlined af-
ter its proof are part of a general phenomenon of arithmetic differential equations
of order 4. These are the first instances “beyond modularity” in the sense that
arithmetic differential equations of order 2 and 3 are always supplied by modular
parametrisation. In order 4, we have to distinguish two particular novel situations
(though our knowledge about either is imperfect and incomplete): (the Zariski clo-
sure of) the monodromy group is the orthogonal group O4 ' O2,2 of dimension 6
or the symplectic group Sp4 of dimension 10. The example given in Theorem 1
corresponds to the first (orthogonal) situation: on the level of Lie groups, O2,2 can
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be realised as the tensor product of two copies of SL2 (or GL2). There is a lim-
ited amount of further examples of this type [21, 29, 33] though we expect that all
underlying Picard–Fuchs differential equations with such monodromy can be repre-
sented as tensor products of two arithmetic differential equations of order 2. There
is a natural hypergeometric production of such orthogonal cases using Orr-type for-
mulae (see [18, 28]) but there are plenty of other cases coming from classical work
of W. N. Bailey and its recent generalisations [29, 34]. Many such cases, mostly
forecast by Sun [25], are still awaiting their explicit factorisation. Though these
situations do not cover symplectic monodromy instances, they can still be viewed
as an intermediate step between classical modularity and Sp4: the antisymmetric
square of the latter happens to be O5 ' O3,2 (see [4]).

More in the direction of three-variable Mahler measure, the conjectural evaluation
in (6) and Theorem 2 brings us to the expectation

1

2π

∫ 1

0
2F1

(
1
2
, 1

2
1

∣∣∣∣ 1− x2

16

)
log x dx

?
= 2L′(f2;−1). (8)

This one highly resembles the evaluation

1

2

∫ 1

0
2F1

(
1
2
, 1

2
1

∣∣∣∣ x216

)
dx =

1

2
· 3F2

(
1
2
, 1

2
, 1

2
1, 3

2

∣∣∣∣ 1

16

)
= 2L′(f2; 0) (9)

established in [22]. The related modular parametrisation

x = x(τ) = 16

(
η(τ)η(4τ)2

η(2τ)3

)4

corresponds to

1− x2

16
=

(
η(τ)2η(4τ)

η(2τ)3

)8

,

F

(
x2

16

)
=

η(2τ)10

η(τ)4η(4τ)4
and F

(
1− x2

16

)
= −2iτF

(
x2

16

)
,

where F denotes the corresponding 2F1 hypergeometric series. Note that x ranges
from 0 to 4 when τ runs from i∞ to 0 along the imaginary axis; however, the point
τ0 = i 0.8774376613482 . . . , at which x(τ0) = 1, is not a quadratic irrationality.
Furthermore, H. Cohen [16] observes another step in the ladder (9), (8):

6

π2

∫ 1

0
2F1

(
1
2
, 1

2
1

∣∣∣∣ x216

)
log2 x dx

?
= 2L′(f2;−2) =

3 · 153

8π6
L(f2; 4) (10)

= 1.2165632526 . . . ,

though not linked to a particular Mahler measure.
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The expression in Theorem 3 is somewhat different from the one in Theorem 2,
and resembles the hypergeometric evaluation of the L-value

−L′(f̂2;−1) =
128

π4
L(f̂2; 3)

=
Γ(1

4
)2

6
√

2π5/2
4F3

(
1, 1, 1, 1

2
7
4
, 3

2
, 3

2

∣∣∣∣ 1

)
+

4Γ(3
4
)2

√
2π5/2

4F3

(
1, 1, 1, 1

2
5
4
, 3

2
, 3

2

∣∣∣∣ 1

)
+

Γ(1
4
)2

2
√

2π5/2
4F3

(
1, 1, 1, 1

2
3
4
, 3

2
, 3

2

∣∣∣∣ 1

)
,

where f̂2(τ) = η(4τ)2η(8τ)2 is a cusp form of level 32, obtained in [32, Theorem 3].
Finally, we remark that the integral

W ′
3(0) =

∫ 3

0

log x dP3(x) = log 3−
∫ 3

0

P3(x)
dx

x

in the notation of Section 5, with P3(x) related to eta quotients, is visually linked
to the following result in [7] (also discussed in greater generality in [2, 26])∫ 1

0

1

9

(
1− η(τ)9

η(3τ)3

)
dq

q
= lim

q→1−

∞∑
m,n=1

(
−3

n

)
n

m
qmn = L′(χ−3;−1).

However, apart from the fact that the two quantities coincide we could not find a
direct link between the two integrals.

Acknowledgements. We thank H. Cohen for supplying us with the numerical
observation (10) whose origin remains completely mysterious to us. We also thank
the referee for their valuable feedback.
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