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A g-analog of Ljunggren’s binomial
congruence

Armin Straubff
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Abstract. We prove a g-analog of a classical binomial congruence due to Ljunggren which states that

(7))

modulo p> for primes p > 5. This congruence subsumes and builds on earlier congruences by Babbage, Wolsten-
holme and Glaisher for which we recall existing g-analogs. Our congruence generalizes an earlier result of Clark.
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1 Introduction and notation

Recently, g-analogs of classical congruences have been studied by several authors including (Cla93),
(And99), (SP07), (Pan07), (CP08)), (Dil08). Here, we consider the classical congruence

apy a 3
()= () =

which holds true for primes p > 5. This also appears as Problem 1.6 (d) in (Sta97). Congruence (I)) was
proved in 1952 by Ljunggren, see (Gra97), and subsequently generalized by Jacobsthal, see Remark [6]
Let[n], :=1+q+...q" % [n]y! := [n]y[n — 1], - [1], and

denote the usual g-analogs of numbers, factorials and binomial coefficients respectively. Observe that
[n]; = n so that in the case ¢ = 1 we recover the usual factorials and binomial coefficients as well.
Also, recall that the g-binomial coefficients are polynomials in ¢ with nonnegative integer coefficients.
An introduction to these g-analogs can be found in (Sta97).

We establish the following g-analog of (T)):
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Theorem 1 For primes p > 5 and nonnegative integers a, b,

(Zi)q - (Z) qr? - (bjf 1) (b—; 1) pQI; 1(qp —1)> mod [p]z. 2)

The congruence (2) and similar ones to follow are to be understood over the ring of polynomials in ¢ with
integer coefficients. We remark that p? — 1 is divisible by 12 for all primes p > 5.
Observe that (2) is indeed a g-analog of (I): as ¢ — 1 we recover ().

Example 2 Choosing p = 13, a = 2, and b = 1, we have

26
( ) —14q"% —14(¢"® 12+ (1 +q+...+¢2)f(q)
q

13
where f(q) = 14 — 41q + 41¢® — ... + ¢*3? is an irreducible polynomial with integer coefficients. Upon
setting ¢ = 1, we obtain (fg) = 2 modulo 133.

Since our treatment very much parallels the classical case, we give a brief history of the congruence (TJ)
in the next section before turning to the proof of Theorem T}

2 A bit of history

A classical result of Wilson states that (n — 1)! 4 1 is divisible by n if and only if n is a prime number.
“In attempting to discover some analogous expression which should be divisible by n2, whenever n is a
prime, but not divisible if n is a composite number”, (Bab19)), Babbage is led to the congruence

(2p— 1) =1 modp? 3)
p—1

for primes p > 3. In 1862 Wolstenholme, (Wol62)), discovered (3] to hold modulo p3, “for several cases,
in testing numerically a result of certain investigations, and after some trouble succeeded in proving it to
hold universally” for p > 5. To this end, he proves the fractional congruences

p—1 1

Z n =0 modp?, 4)
i=1

p—1 1

Z 5= 0 modp (5)

i=1
for primes p > 5. Using (@) and (5) he then extends Babbage’s congruence (3)) to hold modulo p?:
2p—1
(p ):1 mod p3 (6)
p—1

for all primes p > 5. Note that (6) can be rewritten as (2pp ) = 2 modulo p3. The further generalization of
(6) to (I, according to (Gra97), was found by Ljunggren in 1952. The case b = 1 of (I)) was obtained by
Glaisher, (Gla00), in 1900.
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In fact, Wolstenholme’s congruence (6)) is central to the further generalization (T)). This is just as true
when considering the g-analogs of these congruences as we will see here in Lemma 5
A g-analog of the congruence of Babbage has been found by Clark (Cla95) who proved that

ap\ _ (a 2
(), (), ot >

We generalize this congruence to obtain the g-analog () of Ljunggren’s congruence (I)). A result similar
to (7 has also been given by Andrews in (And99).

Our proof of the g-analog proceeds very closely to the history just outlined. Besides the g-analog
of Babbage’s congruence (3)) we will employ g-analogs of Wolstenholme’s harmonic congruences (4)) and
() which were recently supplied by Shi and Pan, (SP07):

Theorem 3 For primes p > 5,

p—1 2
1 —1 —1
=g @ U = Dl mod o) ®)
i=1 q
as well as )
=1 ~(p-5
> i — —%(q ~1)> mod [p],. )

This generalizes an earlier result (And99) of Andrews.

3 A g-analog of Ljunggren’s congruence

In the classical case, the typical proof of Ljunggren’s congruence (I) starts with the Chu-Vandermonde
identity which has the following well-known g-analog:

m+”) <m) ( n ) J(n—k+j)
= ) . q S
( k q EJ: 17/ q k= q

We are now in a position to prove the g-analog of ().

Theorem 4

Proof of Theorem [T} As in (Cla95) we start with the identity

(ap> = 2 (p> <p> <p) g e sy (10)
bp p ¢/ \c2/, a/,

c1+...4+cqa=bp

which follows inductively from the g-analog of the Chu-Vandermonde identity given in Theorem[d] The
summands which are not divisible by [p]3 correspond to the c; taking only the values 0 and p. Since each
such summand is determined by the indices 1 < j; < jo < ... < Jp < a for which ¢; = p, the total
contribution of these terms is

221),:1(. _1)_ 2(b o 22b:1i1 o a
Z qp * o b (2) - Z qp ’ = b qPQ.

1<ji<...<jp<a 0<ir<...<ip<a—b
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This completes the proof of (7)) given in (Cla95)).

To obtain (2)) we now consider those summands in which are divisible by [p]2 but not divisible by
[p]g. These correspond to all but two of the ¢; taking values 0 or p. More precisely, such a summand is
determined by indices 1 < 71 < jo < ... < Jjp < Jp+1 < a, two subindices 1 < k < ¢ < b+ 1, and
1 < d < p—1such that
d for i = jy,

p —d fori = jg,
pfOI"i € {jlv s 7jb+1}\{jk7jf}a
Ofori e {j1,...,Jp+1}

For each fixed choice of the j; and k, ¢ the contribution of the corresponding summands is

p—1
Z p p qPZ1<iga(i—1)ci—21gi<ygaCicj
d q p—d p

d=1

C; =

which, using that ¢” = 1 modulo [p] , reduces modulo [p]z to

p—1

— (P P > (2p
0,620 7= (3), e
d=1 g \P q P/y
We conclude that

@gf«®W+QiJGy>«?L*%% mod p],. (1

The general result therefore follows from the special case a = 2, b = 1 which is separately proved next.
O

4 A g-analog of Wolstenholme’s congruence

We have thus shown that, as in the classical case, the congruence can be reduced, via (11)), to the case
a = 2, b = 1. The next result therefore is a g-analog of Wolstenholme’s congruence ().

Lemma 5 For primesp > 5,

2 _
Gﬂ =2 - T @ - ) mod ol

Proof: Using that [an], = [a] . [n], and [n +m] = [n], + ¢" [m], we compute

<2p> _ ol 2p -1+, [P a,
v/,  Ipllp—1, -1, p— 1!
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which modulo [p]g reduces to (note that [p — 1], ! is relatively prime to [p]i)

[Q}qp q(Pfl)P + q(P*2)P Z @ + q(P*3)P Z m‘l [p]‘l ) (12)

1<igp—1 H‘? 1<i<j<p—1 Mq [j]q

Combining the results () and () of Shi and Pan, (SP07), given in Theorem 3] we deduce that for primes
P =95,

1 —1)(p—2
3 ORI (p )6(1’ )(q ~ 1) mod|p],. (13)
1<i<j<p—1 Hallg
Together with (8] this allows us to rewrite |i modulo [p]z as
2
w-1p 4 -2 (_P— Lo p PPl e
2, (4077 02 (<2 @ -0+ P - 12 ) +
- D(p—2
+q(p73)p (p )6(p )(qp 1)2>
Using the binomial expansion
m
P = ((¢P = 1)+ 1) = P 1)k
=@y =3 ()@ -
to reduce the terms ¢""? as well as [2] , = 1 + ¢” modulo the appropriate power of [p], we obtain
2 —1)p—1
() =24p -+ EE D - 102 moa
P/, 12
Since ( 0
p—1)p
2lgpz =2+p(¢" = 1) + (" - 1) mod [p];
the result follows. O

Remark 6 Jacobsthal, see (Gra97), generalized the congruence (1) to hold modulo p3*" where 7 is the

p-adic valuation of
a a b+1
ab(a—b)<b>—2a(b+l>< 5 )

It would be interesting to see if this generalization has a nice analog in the g-world.
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