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Abstract

We consider the problem of deciding whether a given rational function has a power series
expansion with all its coefficients positive. Introducing an elementary transformation that
preserves such positivity we are able to provide an elementary proof for the positivity of
Szegö’s function

1
(1− x)(1− y) + (1− y)(1− z) + (1− z)(1− x)

which has been at the historical root of this subject starting with Szegö. We then demon-
strate how to apply the transformation to prove a 4-dimensional generalization of the
above function, and close with discussing the set of parameters (a, b) such that

1

1− (x+ y + z) + a (x y + y z + z x)+ b x y z

has positive coefficients.
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1 Introduction

A rational function is called positive if all its Taylor coefficients are positive. In 1930 H. Lewy
and K. Friedrichs conjectured the positivity of the rational function

1
(1−x)(1− y) + (1− y)(1− z) + (1− z)(1− x)

=
∑

k,m,n>0

a(k, m, n) xk ym zn. (1)

The positivity of the a(k, m, n) was proved shortly after by G. Szegö employing heavy
machinery in [10], but he remarks himself “die angewendeten Hilfsmittel stehen allerdings in
keinem Verhältnis zu der Einfachheit des Satzes”1. Motivated by these words, T. Kaluza gave
an elementary but technically difficult proof that was published in the very same journal [7].
R. Askey and G. Gasper also proved the above positivity in [2] using some of Szegö’s observa-
tions but avoiding the use of Bessel functions in favour of Legendre polynomials. The problem
has also been considered in the recent paper [8] by M. Kauers from the viewpoint of computer
algebra, and Kauers establishes the result under the constraint that k 6 16 by finding appro-
priate recurrences. We provide an elementary proof of Szegö’s result with the main ingredient
being a simple positivity preserving operation in the spirit of [5], whence we reduce the posi-
tivity of the coefficients a(k, m, n) to the positivity of another rational function that is easier
to handle. While our proof is indeed elementary, to check that the latter rational function is
positive is most conveniently done with the aid of computer algebra.

1. “the used tools, however, are disproportionate to the simplicity of the statement”
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2 Positivity preserving operations

The following elementary proposition is closely related to the positivity preserving operations
given by J. Gillis, B. Reznick and D. Zeilberger in [5, Proposition 2].

Proposition 1. Fix n > 1. Let 1 6 j 6 n and suppose that the polynomial p(x1, � , xn) is

linear in xj. If 1/p(x1,� , xn) is positive then so is

Tj ,λ

(

1
p(x1,� , xn)

)4 1
p(x1,� , xn)−λ xj p(x1,� , xj−1, 0, xj+1,� , xn)

whenever λ > 0. In other words, the operator Tj ,λ as defined above is positivity preserving for

λ > 0.

Proof. We may assume j =1. Write p(x1,� , xn) = a(x2,� , xn)−x1 b(x2,� , xn). Since

1
p

=
1

a− x1 b
=

∑

n>0

bn

an+1
x1

n

has positive coefficients so does bn/an+1. The quotient

bn

an+1

x1
n

(1−λx1)n+1

has nonnegative coefficients, and for n = 0 they are all positive. This finally implies the posi-
tivity of

∑

n>0

(x1b)
n

((1−λx1)a)n+1 =
1

(1−λx1) a−x1b
=

1
p−λx1a

. �

In this paper, we will only be interested in the positivity of symmetric rational functions 1/p.
We therefore introduce another operator which preserves both positivity and symmetry.

Corollary 1. The operator Tλ defined by

Tλ4 Tn,λ�T2,λT1,λ

is positivity preserving for λ> 0.

Note that Tλ(1/p) is only defined for polynomials p which are linear in each of their variables.
Further note that Tj ,λ is invertible with Tj ,λ

−1 = Tj,−λ. Since the operators T1,λ, T2,λ, � , Tn,λ

commute, this shows that Tλ is invertible as well and Tλ
−1 = T−λ. Hence, in order to establish

the positivity of 1/p it is sufficient to do so for some T−λ(1/p) with λ > 0. That Tλ preserves
symmetry also follows from the fact that T1,λ,� , Tn,λ commute.

Example 1. To prove positivity of 1/p(x, y, z), assuming p to be linear in each of x, y, z, it
suffices to prove positivity of

T−1

(

1
p(x, y, z)

)

=
(p(x, y, z) +x p(0, y, z) + y p(x, 0, z) + z p(x, y, 0)

+x y p(0, 0, z) + y z p(x, 0, 0) + z x p(0, y, 0) + x y z p(0, 0, 0))−1

Notice that the right-hand side is indeed a symmetric rational function if p is symmetric itself.
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3 Szegö’s rational function

3.1 Positivity of Szegö’s rational function

Theorem 1. Szegö’s rational function

f(x, y, z)4 1
1− 2 (x+ y + z) + 3 (x y + y z + z x)

is positive.

Remark 1. Note that up to rescaling this is the rational function from (1), namely

1
3

f
(

x

3
,
y

3
,
z

3

)

=
1

(1−x)(1− y) + (1− y)(1− z) + (1− z)(1− x)
.

Proof. The denominator of f is linear in all the variables x, y, z, so we can apply our
inverted positivity preserving operation T−1. We obtain

g(x, y, z)4 T−1(f(x, y, z)) =
1

1− (x + y + z) + 4 x y z
.

By Corollary 1 positivity of g implies positivity of f . The positivity of g, however, is well-
known, and several short proofs have been given in the literature (not so, to our knowledge,
for f). One possibility is to note that the coefficients b(k, m, n) of g satisfy the following
recurrence, first observed by J. Gillis and J. Kleeman [4],

(1 + n) b(k + 1, m +1, n +1) =2 (n+m− k) b(k + 1, m, n)+ (1 + n−m + k) b(k + 1,m +1, n),

which together with the initial b(0, 0, 0) = 1 proves positivity of the b(k, m, n) by induction.
That the b(k, m, n) satisfy this recurrence is verified by just checking that their generating
function g solves the corresponding differential equation. �

Remark 2. Kauers describes in [8] how to automatically find positivity proving recurrences
with computer algebra, and also remarks that no such first-order recurrence with linear coeffi-
cients exists for Szegö’s f .

Another simple proof of the positivity of g based on MacMahon’s master theorem is given by
M. Ismail and M. Tamhankar in [6]. We will discuss this theorem in Section 3.3. The reason
for doing so is that we discovered the transformation presented in Corollary 1 by applying
MacMahon’s master theorem, whence it is possible to just see its impact.

3.2 A 4-dimensional generalization

Following [10, §3] we define

qn(t) =
∏

k=1

n

(t− xk),
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and observe that one can recover Szegö’s function as

1

q3
′(1)

=
1

(1− x1)(1−x2) + (1−x2)(1− x3)+ (1− x3)(1−x1)
.

Szegö proves that 1/qn
′ (1) as a rational function in x1,� , xn has positive Taylor coefficients for

all n > 2, and remarks that the essential difficulty lies in the cases n = 3 and n = 4. While our
previous discussion covers n = 3, we now want to briefly demonstrate how to use the operators
Tλ from Corollary 1 to also establish the case n=4 in an elementary way.

Theorem 2. The rational function

1

q4
′(1)

=
1

∑

i<j<k
(1−xi)(1−xj)(1−xk)

,

where i, j , k =1, 2, 3, 4, is positive.

Proof. Expanding the denominator of 1/q4
′(1) and rescaling produces the rational function

1

1− 3
∑

i
xi +8

∑

i<j
xixj − 16

∑

i<j<k
xixjxk

.

Applying T−2 we find that it suffices to establish positivity of

1
1−

∑

i
xi + 4

∑

i<j<k
xixjxk − 16x1x2x3x4

.

This again is a well-known result. In particular, Gillis, Reznick and Zeilberger demonstrate in
[5] how a single application of their elementary methods can be used to deduce the desired
positivity. �

For other possible generalizations of Szegö’s function the interested reader is referred to [2],
[1]. In [3] relations to rearrangement problems and integrals of products of Laguerre polyno-
mials are studied.

3.3 MacMahon’s master theorem

The following is a celebrated result of P. A. MacMahon published in [9], and coined by him-
self as “a master theorem in the Theory of Permutations”.

Theorem 3. (MacMahon, 1915) Let R be a commutative ring, A ∈ Rn×n a matrix, and

x =(x1,� , xn) commuting indeterminants. For every multi-index m = (m1,� ,mn)∈Z>0
n

[xm]
∏

i=1

n




∑

j=1

n

Ai,j xi





mi

= [xm]det



In −A





x1 �
xn









−1

,

where [xm] denotes the coefficient of x1
m1�xn

mn in the expansion of what follows.
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We find, preferably by using computer algebra, that Szegö’s function f(x, y, z) can be
expressed as

1
1− 2 (x + y + z) + 3 (x y + y z + z x)

= det



I3−





2 − 1 − 1
− 1 2 − 1
− 1 − 1 2









x

y

z









−1

.

MacMahon’s theorem 3 now asserts that the coefficient a(k, m, n) of xk ym zn in this expan-
sion is equal to the coefficient of xk ym zn in

(2x− y − z)k (−x +2y − z)m (−x− y +2z)n.

Using the binomial theorem this product is equal to

∑

r,s,t

(

k

r

)(

m

s

)(

n

t

)

xk−r ym−s zn−t (x− y − z)r (− x+ y − z)s (−x− y + z)t,

which shows that in order to establish positivity of the a(k, m, n) it is sufficient to prove posi-
tivity of the coefficient of xr ys zt in

(x− y − z)r (−x + y − z)s (− x− y + z)t.

By applying MacMahon’s master theorem 3 backwards we find that

det



I3−





1 − 1 − 1
− 1 1 − 1
− 1 − 1 1









x

y

z









−1

=
1

1− (x + y + z) + 4 x y z
,

which once more reduces positivity of f to the positivity of g.

With this example in mind, we see the following relation to the positivity preserving opera-
tions Tλ: Let f be a rational function that Tλ can be applied to and which can be represented
as f = 1/det(I − A X) for some matrix A (here X denotes the diagonal matrix with the vari-
ables of f as its entries). Then Tλ(f) = 1/det(I − Aλ X) where Aλ is obtained from A by
increasing all its diagonal entries by λ. Similarly, application of Tj,λ corresponds to increasing
the j-th diagonal element by λ. Thus when working with a matrix A corresponding to f

instead of with f itself, the action of the positivity preserving operators described here is
plainly visible.

4 On positivity of a family of rational functions

Kauers states that “it is easy to show that there can be no algorithm which for a given multi-
variate rational function decides whether all its series coefficients are positive”, see [8]. There-
fore we focus on the reciprocals of certain symmetric polynomials. In the 3-dimensional case
we have the 4 elementary symmetric polynomials

1, x+ y + z, x y + y z + z x, x y z,
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and if we further require that every variable appears at most linearly, the most general nor-
malized candidate for positivity is

ha,b(x, y, z) =
1

1− (x+ y + z) + a (x y + y z + z x) + b x y z
.

We are interested in the set of all (a, b) such that ha,b has positive coefficients. First, we note
that positivity of some ha,b implies positivity of ha′,b′ whenever a′ 6 a and b′ 6 b. This is a
consequence of the following general fact.

Proposition 2. Let 1/p(x1, � , xr) be a positive rational function, and q(x1, � , xr) any poly-

nomial with non-negative coefficients. Then the rational function

1
p− q

is positive provided that it has no pole at the origin.

Proof. This follows from the geometric summation

1
p− q

=
1
p

∑

n>0

(

q

p

)n

. �

Example 2. We shortly demonstrate another application of this fact. In [8], it was conjec-
tured that the rational function

1

1− (x+ y + z)+
1

4
(x2 + y2 + z2)

is positive. Clearly,

1

(1− x)2

has positive coefficents, and thus has

1

(1−
x+ y + z

2
)2

=
1

1− (x+ y + z) +
1

2
(x y + y z + z x) +

1

4
(x2 + y2 + z2)

.

Proposition 2 now implies positivity of the function considered by Kauers.

Based upon numerical evidence and partial proofs, which will be provided in the sequel, we
present the following conjecture attempting to describe the set of all (a, b) such that ha,b has
positive coefficients.

Conjecture 1. The rational function ha,b has positive coefficients if and only if











b < 6(1− a)

b 6 2− 3a +2(1− a)3/2

a 6 1

.
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Figure 1 shows the region defined by the restrictions given in Conjecture 1 with the points
corresponding to Szegö’s function f(x, y, z)= h3/4,0(2x, 2y, 2z) and g =h0,4 marked.
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15

20

bb

−2 −1 1

aa

Figure 1. Region of Positivity of ha,b

First, we turn to the “if” part of Conjecture 1, that is conditions for the (a, b) that are suffi-
cient for positivity of ha,b.

Proposition 3. ha,b is positive if 0 6 a6 1 and b6 2− 3a+ 2(1− a)3/2.

Proof. Let λ > 0. By Corollary 1 positivity of some ha,b implies positivity of ha′,b′4 Tλ(ha,b)

(here we mean that ha′,b′ equals Tλ(ha,b) up to rescaling the variables), where

a′=
a +2λ +λ2

(1 + λ)2
, b′=

b− 3λa− 3λ2
−λ3

(1 +λ)3
.

Starting with the positivity of g = h0,4, that is (a, b) = (0, 4), we find that b′ = 2 − 3a′ + 2(1 −

a′)3/2. Using Proposition 2 this proves the case 0 6 a < 1. For a =1 observe that

h1,−1(x, y, z) =
1

(1−x)(1− y)(1− z)

is obviously positive. �

Using the positivity of g and the positivity preserving operations Tλ we have thus been able to
prove the “if” part of Conjecture 1 under the hypothesis that a > 0. Clearly, we can strengthen
this hypothesis to a > a1 if we succeed in proving the positivity of ha1,b1 with b1 = 2 − 3a1 +

2(1 − a1)
3/2. However, according to Conjecture 1 we neccessarily have a1 > a0, where a0 ≈ −

1.81451 is the unique real solution of

2− 3a0 +2(1− a0)
3/2 =6(1− a0).

Let’s now consider the “only if” direction of Conjecture 1.
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Proposition 4. ha,b is positive only if b < 6(1− a) and a6 1.

Proof. Observe that the coefficient of x y z in the expansion of ha,b(x, y, z) evaluates as 6(1−

a)− b which proves that b < 6(1− a) for positivity.

For the second claim we expand ha,b(x, y, 0) as

ha,b(x, y, 0) =
1

1− x− y + ax y
=

∑

n>0

(1− ax)n

(1−x)n+1
yn.

Using

1

(1− x)n+1
=

∑

m>0

(

n +m

n

)

xm,

we deduce that the coefficient of x yn in ha,b(x, y, z) is given by n + 1 − n a. Positivity of ha,b

thus implies that

a <
n+ 1

n

for all positive integers n. �

Proposition 3 is based upon the positivity of g = h0,4, which by Proposition 2 implies that b 6

4 suffices for positivity of h0,b. This bound turns out to be sharp.

Proposition 5. h0,b is positive only if b 6 4.

Proof. We expand h0,b as

h0,b(x, y, z) =
1

1− x− y − z + b x y z
=

∑

n>0

(1− b x y)n

(1−x− y)n+1
zn.

Using

1

(1−x− y)n+1
=

∑

m>0

(

n+m

n

)

(x+ y)m,

we conclude that the coefficient of x yn zn in h0,b(x, y, z) is given by

(n+ 1)
(

2n+ 1
n

)

− b n
(

2n− 1
n

)

.

Positivity of h0,b then implies that

b <
2 (2n+1)

n

for all integers n > 0. �

Corollary 2. Let a 6 0. Then ha,b is positive only if b 6 2− 3a +2(1− a)3/2.

Proof. Otherwise an application of Tλ with appropriate λ > 0 would produce (after normal-
ization) a positive h0,b′ with b′> 4 contradicting Proposition 5. �
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To improve on the hypothesis a 6 0, it would be desirable to show optimality of Szegö’s func-
tion, that is that ha,0 is positive only if a 6 3/4. As in the proof of Proposition 5 we believe
that it suffices to consider the coefficients of x yn zn in ha,0(x, y, z). While we readily find a
second order recurrence for those coefficients we didn’t see how to derive the necessity of a 6

3/4 in order to prove positivity.

Example 3. By computing the first 100 coefficients of x yn zn in ha,0(x, y, z) we learn that
ha,0 is positive only if a < 0.75188.

The (conjectured) optimality of Szegö’s function f is surprising in this context since f = T1(g)

allows us to conclude the positivity of f from the positivity of g but not vice versa. Yet, the
positivity preserving operator T1 still provided us with an optimal result. In fact, more seems
to be true. As stated in Conjecture 1, starting with a positive ha,b which is optimal (in the
sense that increasing either a or b will destroy positivity) the positivity preserving operators
Tλ, λ > 0, not only yield a positive rational function Tλ(ha,b) but again they seem to produce
an optimal rational function.
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