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Abstract. One of the many remarkable properties of the Apéry numbers
A(n), introduced in Apéry’s proof of the irrationality of ζ(3), is that they

satisfy the two-term supercongruences

A(prm) ≡ A(pr−1m) (mod p3r)

for primes p > 5. Similar congruences are conjectured to hold for all Apéry-like

sequences. We provide a fresh perspective on the supercongruences satisfied
by the Apéry numbers by showing that they extend to all Taylor coefficients

A(n1, n2, n3, n4) of the rational function

1

(1 − x1 − x2)(1 − x3 − x4) − x1x2x3x4
.

The Apéry numbers are the diagonal coefficients of this function, which is
simpler than previously known rational functions with this property.

Our main result offers analogous results for an infinite family of sequences,

indexed by partitions λ, which also includes the Franel and Yang–Zudilin num-
bers as well as the Apéry numbers corresponding to ζ(2). Using the example

of the Almkvist–Zudilin numbers, we further indicate evidence of multivariate

supercongruences for other Apéry-like sequences.

1. Introduction

The Apéry numbers

(1) A(n) =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

played a crucial role in R. Apéry’s proof [Apé79], [Poo79] of the irrationality of ζ(3)
and have inspired much further work. Among many other interesting properties,
they satisfy congruences with surprisingly large moduli, referred to as supercongru-
ences, a term coined by F. Beukers [Beu85]. For instance, for all primes p > 5 and
all positive integers r,

(2) A(prm) ≡ A(pr−1m) (mod p3r).
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2 MULTIVARIATE APÉRY NUMBERS AND SUPERCONGRUENCES

The special case m = 1, r = 1 was conjectured by S. Chowla, J. Cowles and
M. Cowles [CCC80], who established the corresponding congruence modulo p2. The
case r = 1 was subsequently shown by I. Gessel [Ges82] and Y. Mimura [Mim83],
while the general case has been proved by M. Coster [Cos88]. The proof is an
adaption of F. Beukers’ proof [Beu85] of the related congruence

(3) A(prm− 1) ≡ A(pr−1m− 1) (mod p3r),

again valid for all primes p > 5 and all positive integers r. That congruence
(3) can be interpreted as an extension of (2) to negative integers is explained in
Remark 1.3. For further congruence properties of the Apéry numbers we refer to
[Cow80], [Beu87], [AO00], [Kil06].

Given a series

(4) F (x1, . . . , xd) =
∑

n1,...,nd>0

a(n1, . . . , nd)x
n1
1 · · ·x

nd
d ,

its diagonal coefficients are the coefficients a(n, . . . , n) and the diagonal is the or-
dinary generating function of the diagonal coefficients. For our purposes, F will
always be a rational function. It is well-known, see for instance [LvdP90, Theorem
5.2], that the diagonal of a rational function satisfies a Picard–Fuchs linear differ-
ential equation and as such “comes from geometry”. In particular, the diagonal
coefficients satisfy a linear recurrence with polynomial coefficients.

Many sequences of number-theoretic interest can be represented as the diagonal
coefficients of rational functions. In particular, it is known [Chr84], [LvdP90] that
the Apéry numbers are the diagonal coefficients of the rational function

(5)
1

(1− x1)[(1− x2)(1− x3)(1− x4)(1− x5)− x1x2x3]
.

Several other rational functions of which the Apéry numbers are the diagonal coef-
ficients are given in [BBC+13], where it is also discussed how these can be obtained
from the representation of the Apéry numbers as the binomial sum (1). However,
all of these rational function involve at least five variables and, in each case, the
polynomial in the denominator factors. Our first result shows that, in fact, the
Apéry numbers are the diagonal coefficients of a simpler rational function in only
four variables.

Theorem 1.1. The Apéry numbers A(n), defined in (1), are the diagonal coeffi-
cients of

(6)
1

(1− x1 − x2)(1− x3 − x4)− x1x2x3x4
.

Representing a sequence as the diagonal of a rational function has certain ben-
efits. For instance, asymptotic results can be obtained directly and explicitly from
this rational function. This is the subject of multivariate asymptotics, as developed
in [PW02]. For details and a host of worked examples we refer to [PW08]. As
a second example, the rational generating function provides a means to compute
the sequence modulo a fixed prime power. Indeed, the diagonal of a rational func-
tion with integral Taylor coefficients, such as (6), is algebraic modulo pα for any α
[LvdP90]. A recent demonstration that this can be done very constructively is given
in [RY13], where the values modulo pα of sequences such as the Apéry numbers
are, equivalently, encoded as finite automata.
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We note that a statement such as Theorem 1.1 is more or less automatic to prove
once discovered. For instance, given a rational function, we can always repeatedly
employ a binomial series expansion to represent the Taylor coefficients as a nested
sum of hypergeometric terms. In principle, creative telescoping [PWZ96] will then
obtain a linear recurrence satisfied by the diagonal coefficients, in which case it
suffices to check that the alternative expression satisfies the same recurrence and
agrees for sufficiently many initial values.

For the rational function F (x) given in (6), we can gain considerably more
insight. Indeed, for all the Taylor coefficients A(n), defined by

(7) F (x1, x2, x3, x4) =
∑

n1,n2,n3,n4>0

A(n1, n2, n2, n4)xn1
1 xn2

2 xn3
3 xn4

4 ,

we find, for instance by applying MacMahon’s Master Theorem [Mac15] as detailed
in Section 4, the explicit formula

(8) A(n) =
∑
k∈Z

(
n1

k

)(
n3

k

)(
n1 + n2 − k

n1

)(
n3 + n4 − k

n3

)
,

of which Theorem 1.1 is an immediate consequence.
An instance of our main result is the observation that the supercongruence (2)

for the Apéry numbers generalizes to all coefficients (8) of the rational function (6)
in the following sense.

Theorem 1.2. Let n = (n1, n2, n3, n4) ∈ Z4. The coefficients A(n), defined in
(7) and extended to negative integers by (8), satisfy, for primes p > 5 and positive
integers r, the supercongruences

(9) A(prn) ≡ A(pr−1n) (mod p3r).

Note that the Apéry numbers are A(n) = A(n, n, n, n) so that (9) indeed gen-
eralizes (2). Our reason for allowing negative entries in n is that by doing so, we
also generalize Beukers’ supercongruence (3). Indeed, as explained in Remark 1.3
below, A(n − 1) = A(−n,−n,−n,−n). Theorem 1.2 is a special case of our main
result, Theorem 3.2, in which we prove such supercongruences for an infinite family
of sequences. This family includes other Apéry-like sequences such as the Franel
and Yang–Zudilin numbers as well as the Apéry numbers corresponding to ζ(2).

We therefore review Apéry-like sequences in Section 2. Though no uniform
reason is known, each Apéry-like sequence appears to satisfy a supercongruence of
the form (2), some of which have been proved [Beu85], [Cos88], [CCS10], [OS11],
[OS13], [OSS14] while others remain open [OSS14]. A major motivation for this
note is to work towards an understanding of this observation. Our contribution
to this question is the insight that, at least for several Apéry-like sequences, these
supercongruences generalize to all coefficients of a rational function. Our main
result, which includes the case of the Apéry numbers outlined in this introduction,
is given in Section 3. In that section, we also record two further conjectural instances
of this phenomenon. Finally, we provide proofs for our results in Sections 4 and 5.

Remark 1.3. Let us indicate that congruence (3) can be interpreted as the natural
extension of (2) to the case of negative integers m. To see this, generalize the
definition (1) of the Apéry numbers A(n) to all integers n by setting

(10) A(n) =
∑
k∈Z

(
n

k

)2(
n+ k

k

)2

.



4 MULTIVARIATE APÉRY NUMBERS AND SUPERCONGRUENCES

Here, we assume the values of the binomial coefficients to be defined as the (limiting)
values of the corresponding quotient of gamma functions, that is,(

n

k

)
= lim
z→0

Γ(z + n+ 1)

Γ(z + k + 1)Γ(z + n− k + 1)
.

Since Γ(z+1) has no zeros, and poles only at negative integers z, one observes that
the binomial coefficient

(
n
k

)
is finite for all integers n and k. Moreover, the binomial

coefficient with integer entries is nonzero only if either k > 0 and n − k > 0, or
if n < 0 and k > 0, or if n < 0 and n − k > 0. Note that in each of these cases
k > 0 or n− k > 0, so that the symmetry

(
n
k

)
=
(
n

n−k
)

allows us to compute these

binomial coefficients in the obvious way. For instance,
(−3
−5

)
=
(−3

2

)
= (−3)(−4)

2! = 6.

As carefully shown in [Spr08], for all integers n and k, we have the negation rule

(11)

(
n

k

)
= sgn(k)(−1)k

(
−n+ k − 1

k

)
,

where sgn(k) = 1 for k > 0 and sgn(k) = −1 for k < 0. Applying (11) to the sum
(10), we find that

A(−n) = A(n− 1).

In particular, the congruence (3) is equivalent to (2) with −m in place of m.

Remark 1.4. The proof of formula (8) in Section 4 shows that the coefficients can
be expressed as

A(n1, n2, n3, n4) = ct
(x1 + x2 + x3)n1(x1 + x2)n2(x3 + x4)n3(x2 + x3 + x4)n4

xn1
1 xn2

2 xn3
3 xn4

4

,

representing them as the constant terms of Laurent polynomials. In particular,
the Apéry numbers (1) are the constant term of powers of a Laurent polynomial.
Namely,

A(n) = ct

[
(x1 + x2)(x3 + 1)(x1 + x2 + x3)(x2 + x3 + 1)

x1x2x3

]n
.

Since the Newton polyhedron of this Laurent polynomial has the origin as its only
interior integral point, the results of [SvS09], [MV13] apply to show that A(n)
satisfies the Dwork congruences

A(prm+ n)A(bn/pc) ≡ A(pr−1m+ bn/pc)A(n) (mod pr)

for all primes p and all integers m,n > 0, r > 1. In particular,

(12) A(prm) ≡ A(pr−1m) (mod pr),

which is a weaker version of (2) that holds for the large class of sequences repre-
sented as the constant term of powers of a Laurent polynomial, subject only to the
condition on the Newton polyhedron. This gives another indication why congru-
ence (2) is referred to as a supercongruence. It would be of considerable interest to
find similarly well-defined classes of sequences for which supercongruences, of the
form (12) but modulo pkr for k > 1, hold. Let us note that the case r = 1 of the
Dwork congruences implies the Lucas congruences

A(n) ≡ A(n0)A(n1) · · ·A(n`) (mod p),

where n0, . . . , n` ∈ {0, 1, . . . , p−1} are the p-adic digits of n = n0+n1p+. . .+n`p
`. It

is shown in [RY13] that Lucas congruences hold for all Taylor coefficients of certain
rational functions. Additional divisibility properties in this direction are obtained
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in [Del13] for Apéry-like numbers as well as for constant terms of powers of certain
Laurent polynomials. Finally, we note that an extension of Dwork congruences to
the multivariate setting has been considered in [KR11]. In contrast to our approach,
where, for instance, the Apéry numbers appear as the diagonal (multivariate) Taylor
coefficients of a multivariate function F (x), the theory developed in [KR11] is
concerned with functions G(x) = G(x1, . . . , xd) for which, say, the Apéry numbers
are the (univariate) Taylor coefficients of the specialization G(x, . . . , x).

2. Review of Apéry-like numbers

The Apéry numbers A(n) are characterized by the 3-term recurrence

(13) (n+ 1)3un+1 = (2n+ 1)(an2 + an+ b)un − n(cn2 + d)un−1,

where (a, b, c, d) = (17, 5, 1, 0), together with the initial conditions

(14) u−1 = 0, u0 = 1.

As explained in [Beu02], the fact, that in the recursion (13) we divide by (n+1)3 at
each step, means that we should expect the denominator of un to grow like (n!)3.
While this is what happens for generic choice of the parameters (a, b, c, d), the Apéry
numbers have the, from this perspective, exceptional property of being integral.
Initiated by Beukers [Beu02], systematic searches have therefore been conducted
for recurrences of this kind, which share the property of having an integer solution
with initial conditions (14). This was done by D. Zagier [Zag09] for recurrences of
the form

(15) (n+ 1)2un+1 = (an2 + an+ b)un − cn2un−1,

by G. Almkvist and W. Zudilin [AZ06] for recurrences of the form (13) with d = 0
and, more recently, by S. Cooper [Coo12] for recurrences of the form (13). In
each case, apart from degenerate cases, only finitely many sequences have been
discovered. For details and a possibly complete list of the sequences, we refer to
[Zag09], [AZ06], [AvSZ11], [Coo12].

Remarkably, and still rather mysteriously, all of these sequences, often referred
to as Apéry-like, share some of the interesting properties of the Apéry numbers.
For instance, they all are the coefficients of modular forms expanded in terms of
a corresponding modular function. In the case of the Apéry numbers A(n), for
instance, it was shown by Beukers [Beu87] that

(16)
∑
n>0

A(n)

(
η(τ)η(6τ)

η(2τ)η(3τ)

)12n

=
η7(2τ)η7(3τ)

η5(τ)η5(6τ)
,

where η(τ) is the Dedekind eta function η(τ) = eπiτ/12
∏
n>1(1 − e2πinτ ). The

modular function and the modular form appearing in (16) are modular with respect
to the congruence subgroup Γ0(6) of level 6 (in fact, they are modular with respect
to a slightly larger group). While this relation with modular forms can be proven
in each individual case, no conceptual explanation is available in the sense that if
an additional Apéry-like sequence was found we would not know a priori that its
generating function has a modular parametrization such as (16).

As a second example, it is conjectured and in some cases proven [OSS14] that
each Apéry-like sequence satisfies a supercongruence of the form (2). Again, no
uniform explanation is available and, the known proofs [Ges82], [Mim83], [Beu85],
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[Cos88] of the supercongruences (2) and (3) all rely on the explicit binomial repre-
sentation (1) of the Apéry numbers. However, not all Apéry-like sequences have a
comparably effective binomial representation so that, for instance, for the Almkvist–
Zudilin numbers [AvSZ11, sequence (4.12) (δ)], [CZ10], [CCS10]

(17) Z(n) =

n∑
k=0

(−3)n−3k

(
n

3k

)(
n+ k

n

)
(3k)!

k!3
,

which solve (13) with (a, b, c, d) = (−7,−3, 81, 0), the supercongruence

(18) Z(prm) ≡ Z(pr−1m) (mod p3r)

for primes p > 3 is conjectural only.
It would therefore be of particular interest to find alternative approaches to prov-

ing supercongruences. In this paper, we provide a new perspective on supercon-
gruences of the form (18) by showing that they hold, at least for several Apéry-like
sequences, for all coefficients C(n) of a corresponding rational function, which has
the sequence of interest as its diagonal coefficients. In such a case, one may then
hope to use properties of the rational function to prove, for some k > 1, the su-
percongruence C(prn) ≡ C(pr−1n) modulo pkr. For instance, for fixed pr, these
congruences can be proved, at least in principle, by computing the multivariate
generating functions of both C(prn) and C(pr−1n), which are rational functions
because they are multisections of a rational function, and comparing them modulo
pkr.

Let us note that, in Example 3.9 below, we give a characterization of the
Almkvist–Zudilin numbers (17) as the diagonal of a surprisingly simple rational
function and conjecture that the supercongruences (18), which themselves have
not been proved yet, again extend to all coefficients of this rational function. We
hope that the simplicity of the rational function might help inspire a proof of these
supercongruences.

3. Main result and examples

We now generalize what we have illustrated in the introduction for the Apéry
numbers A(n) to an infinite family of sequences Aλ,ε(n), indexed by partitions
λ and ε ∈ {−1, 1}, which includes other Apéry-like numbers such as the Franel
and Yang–Zudilin numbers as well as the sequence used by Apéry in relation with
ζ(2). Our main theorem is Theorem 3.2, in which we prove (multivariate) super-
congruences for this family of sequences, thus unifying and extending a number
of known supercongruences. To begin with, the sequences we are concerned with
are introduced by the following extension of formula (8). Here, xn is short for
xn1

1 xn2
2 · · ·x

nd
d .

Theorem 3.1. Let α ∈ C and λ = (λ1, . . . , λ`) ∈ Z`>0 with d = λ1 + . . .+ λ`, and
set s(j) = λ1 + . . .+ λj−1. Then the Taylor coefficients of the rational function

(19)

∏̀
j=1

1−
λj∑
r=1

xs(j)+r

− αx1x2 · · ·xd

−1

=
∑

n∈Zd>0

Aλ,α(n)xn
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are given by

(20) Aλ,α(n) =
∑
k∈Z

αk
∏̀
j=1

(
ns(j)+1 + . . .+ ns(j)+λj − (λj − 1)k

ns(j)+1 − k, . . . , ns(j)+λj − k, k

)
.

The proof of this elementary but crucial result will be given in Section 4. Observe
that the multivariate Apéry numbers A(n), defined in (8), are the special case
A(2,2),1(n).

Our main result, of which Theorem 1.2 is the special case λ = (2, 2) and ε = 1,
follows next. Note that, if n ∈ Zd>0, then the sum (20) defining Aλ,α(n) is finite and

runs over k = 0, 1, . . . ,min(n1, . . . , nd). On the other hand, if max(λ1, . . . , λ`) > 2,
then Aλ,α(n) is finite for any n ∈ Zd.

Theorem 3.2. Let ε ∈ {−1, 1}, λ = (λ1, . . . , λ`) ∈ Z`>0 and assume that n ∈ Zd,
d = λ1 + . . .+ λ`, is such that Aλ,ε(n), as defined in (20), is finite.

(a) If ` > 2, then, for all primes p > 3 and integers r > 1,

(21) Aλ,ε(p
rn) ≡ Aλ,ε(pr−1n) (mod p2r).

If ε = 1, then these congruences also hold for p = 2.
(b) If ` > 2 and max(λ1, . . . , λ`) 6 2, then, for primes p > 5 and integers

r > 1,

(22) Aλ,ε(p
rn) ≡ Aλ,ε(pr−1n) (mod p3r).

A proof of Theorem 3.2 is given in Section 5. One of the novel features of the
proof, which is based on the approach of Gessel [Ges82] and Beukers [Beu85], is
that it proceeds in a uniform fashion for all n ∈ Zd. As outlined in Remark 1.3,
this allows us to also conclude, and to a certain extent explain, the shifted su-
percongruences (3), which, among Apéry-like numbers, are special to the Apéry
numbers as well as their version (23) related to ζ(2). In cases where n has negative
entries, the summation (20), while still finite, may include negative values for k (see
Remark 1.3). We therefore extend classical results, such as Jacobsthal’s binomial
congruences, to the case of binomial coefficients with negative entries.

Example 3.3. For λ = (2), the numbers (20) specialize to the Delannoy numbers

A(2),1(n) =
∑
k∈Z

(
n1

k

)(
n1 + n2 − k

n1

)
,

which, for n1, n2 > 0, count the number of lattice paths from (0, 0) to (n1, n2) with
steps (1, 0), (0, 1) and (1, 1). The Delannoy numbers do not satisfy (21) or (22),
thus demonstrating the necessity of the condition ` > 2 in Theorem 3.2. They do
satisfy (21) modulo pr, by virtue of Remark 1.4.

Example 3.4. The Apéry-like sequence

(23) B(n) =
∑
k∈Z

(
n

k

)2(
n+ k

k

)
,

which satisfies recurrence (15) with (a, b, c) = (11, 3,−1), was introduced by Apéry
[Apé79], [Poo79] along with (1) and used to (re)prove the irrationality of ζ(2).
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By Theorem 3.1 with λ = (2, 1) and ε = 1, the numbers B(n) are the diagonal
coefficients of the rational function

(24)
1

(1− x1 − x2)(1− x3)− x1x2x3
=

∑
n∈Z3

>0

B(n)xn.

In addition to the binomial sum for B(n) provided by Theorem 3.1, MacMahon’s
Master Theorem 4.1 shows that B(n1, n2, n3) is the coefficient of xn1

1 xn2
2 xn3

3 in the
product (x1 + x2 + x3)n1(x1 + x2)n2(x2 + x3)n3 . An application of Theorem 3.2
shows that, for n ∈ Z3 and integers r > 1, the supercongruences

(25) B(prn) ≡ B(pr−1n) (mod p3r)

hold for all primes p > 5. In the diagonal case n1 = n2 = n3, this result was first
proved by Coster [Cos88].

Proceeding as in Remark 1.3, and using the curious identity

(26)

n∑
k=0

(
n

k

)2(
n+ k

k

)
=

n∑
k=0

(−1)n+k

(
n

k

)(
n+ k

k

)2

,

we find that B(−n) = (−1)n−1B(n− 1) for n > 0. Consequently, (25) implies the
shifted supercongruences B(prm− 1) ≡ B(pr−1m− 1), which hold modulo p3r for
all primes p > 5 and were first proved in [Beu85], along with (3). We observe that,
among the known Apéry-like numbers, the sequence B(n) and the Apéry numbers
(1) are the only ones to satisfy shifted supercongruences of the form (3) in addition
to the supercongruences of the form (2).

Example 3.5. As a consequence of Theorem 3.1 with λ = (3, 1) and ε = 1, the
numbers

C(n) =

n∑
k=0

(
n

k

)2(
n+ k

k

)(
n+ 2k

k

)
are the diagonal coefficients of the rational function 1/((1−x1−x2−x3)(1−x4)−
x1x2x3x4). By Theorem 3.2, it follows that C(prn) ≡ C(pr−1n) modulo p2r, for all
primes p. We note that this congruence does not, in general, hold modulo a larger
power of p, as is illustrated by C(5) = 4, 009, 657 6≡ 7 = C(1) modulo 53. This
demonstrates that in Theorem 3.2(a) the modulus p2r of the congruences cannot,
in general, be replaced with p3r, even for p > 5.

Example 3.6. Next, we consider the sequences

(27) Yd(n) =

n∑
k=0

(
n

k

)d
.

The numbers Y3(n) satisfy the recurrence (15) with (a, b, c) = (7, 2,−8) and are
known as Franel numbers [Fra94], while the numbers Y4(n), corresponding to
(a, b, c, d) = (6, 2,−64, 4) in (13), are sometimes referred to as Yang–Zudilin num-
bers [CCS10]. It follows from Theorem 3.1 with λ = (1, 1, . . . , 1) and ε = 1, that

(28)
1

(1− x1)(1− x2) · · · (1− xd)− x1x2 · · ·xd
=

∑
n∈Zd>0

Yd(n)xn,
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where

(29) Yd(n) =
∑
k>0

(
n1

k

)(
n2

k

)
· · ·
(
nd
k

)
.

It is proved in [CCS10] that Yd(pn) ≡ Yd(n) modulo p3 for primes p > 5 if d > 2.
These congruences are generalized to the multivariate setting by Theorem 3.2, which
shows that, if d > 2, then, for n ∈ Zd>0 and integers r > 1,

(30) Yd(p
rn) ≡ Yd(pr−1n) (mod p3r)

for primes p > 5. Note that

Y2(n) =
∑
k∈Z

(
n1

k

)(
n2

k

)
=

(
n1 + n2

n1

)
.

Hence, congruence (30) includes, in particular, the appealing binomial congruence(
pa

pb

)
≡
(
a

b

)
(mod p3),

which is attributed to W. Ljunggren [Gra97] and which generalizes the classical
congruences by C. Babbage, J. Wolstenholme and J. W. L. Glaisher. It is further
refined by E. Jacobsthal’s binomial congruence, which we review in Lemma 5.1 and
which the proof of Theorem 3.2 crucially depends on.

Let us conclude this section with two conjectural examples, which suggest that
our results are not an isolated phenomenon.

Example 3.7. As noted in the introduction for the Apéry numbers, there is no
unique rational function of which a given sequence is the diagonal. For instance,
the Franel numbers Y3(n) are also the diagonal coefficients of the rational function

(31)
1

1− (x1 + x2 + x3) + 4x1x2x3
.

A rational function F (x) is said to be positive if its Taylor coefficients (4) are
all positive. The Askey–Gasper rational function (31), whose positivity is proved
in [AG77] and [GRZ83], is an interesting instance of a rational function on the
boundary of positivity (if the 4 is replaced by 4+ε, for any ε > 0, then the resulting
rational function is not positive). The present work was, in part, motivated by
the observation [SZ14] that for several of the rational functions, which have been
shown or conjectured to be on the boundary of positivity, the diagonal coefficients
are arithmetically interesting sequences with links to modular forms. Note that
the Askey–Gasper rational function (31) corresponds to the choice λ = (3) and
α = −4 in Theorem 3.1, which makes its Taylor coefficients G(n) = A(3),−4(n)
explicit. We also note that an application of MacMahon’s Master Theorem 4.1
shows that G(n1, n2, n3) is the coefficient of xn1

1 xn2
2 xn3

3 in the product (x1 − x2 −
x3)n1(x2−x1−x3)n2(x3−x1−x2)n3 . Although it is unclear how one might adjust
the proof of Theorem 3.2, numerical evidence suggests that the coefficients G(n)
satisfy supercongruences modulo p3r as well.

Conjecture 3.8. The coefficients G(n) of the rational function (31) satisfy, for
primes p > 5 and integers r > 1,

G(prn) ≡ G(pr−1n) (mod p3r).
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Example 3.9. Remarkably, the previous example has a four-variable analog, which
involves the Almkvist–Zudilin numbers Z(n), introduced in (17). Namely, the
numbers Z(n) are the diagonal coefficients of the unexpectedly simple rational
function

(32)
1

1− (x1 + x2 + x3 + x4) + 27x1x2x3x4
,

as can be deduced from Theorem 3.1 with λ = (4) and α = −27. Again, numerical
evidence suggests that the coefficients Z(n) of (32) satisfy supercongruences modulo
p3r. This is particularly interesting, since even the univariate congruences (18) are
conjectural at this time.

Conjecture 3.10. The coefficients Z(n) of the rational function (32) satisfy, for
primes p > 5 and integers r > 1,

Z(prn) ≡ Z(pr−1n) (mod p3r).

Remark 3.11. The rational functions (31) and (32) involved in the previous ex-
amples make it natural to wonder whether supercongruences might similarly exist
for the family of rational functions given by

1

1− (x1 + x2 + . . .+ xd) + (d− 1)d−1x1x2 · · ·xd
.

This does not, however, appear to be the case for d > 5. In fact, no value b 6= 0 in

1

1− (x1 + x2 + . . .+ xd) + bx1x2 · · ·xd
appears to give rise to supercongruences (by computing coefficients, we have ruled
out supercongruences modulo p2r for integers |b| < 100, 000 and d 6 25).

4. The Taylor coefficients

This section is devoted to proving Theorem 3.1. Before we give a general proof,
we offer an alternative approach based on MacMahon’s Master Theorem, to which
we refer at several occasions in this note and which offers additional insight into the
Taylor coefficients by expressing them as coefficients of certain polynomials (see also
Remark 1.4). This approach, which we apply here to prove formula (8), is based on
the following result of P. MacMahon [Mac15], coined by himself “a master theorem
in the Theory of Permutations”. Here, [xm] denotes the coefficient of xm1

1 · · ·xmnn
in the expansion of what follows.

Theorem 4.1. For x = (x1, . . . , xn), matrices A ∈ Cn×n and m = (m1, . . . ,mn) ∈
Zn>0,

[xm]

n∏
i=1

 n∑
j=1

Ai,jxj

mi

= [xm]
1

det(In −AX)
,

where X is the diagonal n× n matrix with entries x1, . . . , xn.

Proof of formula (8). We note that

1

(1− x1 − x2)(1− x3 − x4)− x1x2x3x4
=

1

det(I4 −MX)
,
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where M and X are the matrices

M =


1 1 1 0
1 1 0 0
0 0 1 1
0 1 1 1

 , X =


x1

x2

x3

x4

 .

An application of MacMahon’s Master Theorem 4.1 therefore shows that the coef-
ficients A(n), with n = (n1, n2, n3, n4), are given by

A(n) = [xn](x1 + x2 + x3)n1(x1 + x2)n2(x3 + x4)n3(x2 + x3 + x4)n4 .

In order to extract the requisite coefficient, we expand the right-hand side as

(x1 + x2 + x3)n1(x1 + x2)n2(x3 + x4)n3(x2 + x3 + x4)n4

=
∑
k1,k4

(
n1

k1

)(
n4

k4

)
xn4−k4

2 xn1−k1
3 (x1 + x2)k1+n2(x3 + x4)n3+k4

=
∑

k1,k2,k3,k4

(
n1

k1

)(
n4

k4

)(
k1 + n2

k2

)(
n3 + k4

k3

)
xk1+n2−k2

1 xn4−k4+k2
2 xn1−k1+k3

3 xn3+k4−k3
4 .

The summand contributes to xn1
1 xn2

2 xn3
3 xn4

4 if and only if ni − ki = nj − kj for all
i, j = 1, . . . , 4. Writing k = ni − ki for the common value, we obtain

A(n1, n2, n3, n4) =
∑
k∈Z

(
n1

k

)(
n4

k

)(
n1 − k + n2

n2 − k

)(
n3 + n4 − k
n3 − k

)
,

which is equivalent to the claimed (8). �

Proof of Theorem 3.1. Recall the elementary formula

1

(1− x)k+1
=
∑
n>0

(
n+ k

k

)
xn,

for integers k > 0. Combined with an application of the multinomial theorem, it
implies that

1

(1− x1 − . . .− xρ)k+1
=
∑
n1>0

· · ·
∑
nρ>0

(
n1 + . . .+ nρ + k

n1, . . . , nρ, k

)
xn1

1 · · ·xnρρ ,

and hence
(33)

(x1 · · ·xρ)k

(1− x1 − . . .− xρ)k+1
=
∑
n1>0

· · ·
∑
nρ>0

(
n1 + . . .+ nρ − (ρ− 1)k

n1 − k, . . . , nρ − k, k

)
xn1

1 · · ·xnρρ .

Here, we used that the multinomial coefficient vanishes if k > min(n1, . . . , nρ).
Geometrically expanding the left-hand side of (19), we find that∏̀

j=1

1−
λj∑
r=1

xs(j)+r

− αx1x2 · · ·xd

−1

=
∑
k>0

αk
∏̀
j=1

(xs(j)+1 · · ·xs(j)+λj )k[
1−

∑λj
r=1 xs(j)+r

]k+1
,

which we further expand using (33) to get∑
k>0

αk
∑

n∈Zd>0

xn
∏̀
j=1

(
ns(j)+1 + . . .+ ns(j)+λj − (λj − 1)k

ns(j)+1 − k, . . . , ns(j)+λj − k, k

)
=

∑
n∈Zd>0

Aλ,α(n)xn,
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with Aλ,α(n) as in (20). �

5. The supercongruences

Our proof of Theorem 3.2, which generalizes the supercongruence in Theo-
rem 1.2, builds upon the respective proofs in [Ges82] and [Beu85].

We need a number of lemmas in preparation. To begin with, we prove the fol-
lowing extension of Jacobsthal’s binomial congruence [Ges83], [Gra97] to binomial
coefficients which are allowed to have negative entries (see Remark 1.3).

Lemma 5.1. For all primes p and all integers a, b,

(34)

(
ap

bp

)
/

(
a

b

)
≡ ε (mod pq),

where q is the power of p dividing p3ab(a − b)/12 and where ε = 1, unless p = 2
and (a, b) ≡ (0, 1) modulo 2 in which case ε = −1.

Proof. Congruence (34), for nonnegative a, b, is proved in [Ges83] (alternatively, a
proof for p > 5 is given in [Gra97]). We therefore only indicate how to extend (34)
to negative values of a or b. Note that, for all a, b ∈ Z with b 6= 0,(

a

b

)
=
a

b

(
a− 1

b− 1

)
,

and hence (
ap

bp

)
/

(
a

b

)
=

(
ap− 1

bp− 1

)
/

(
a− 1

b− 1

)
.

We claim that the extension of (34) to the case a < 0 and b < 0 therefore follows
from

(35)

(
a

b

)
=

(
−b− 1

−a− 1

)
(−1)a−b sgn(a− b),

where sgn is defined as in Remark 1.3. This is clear for p > 3. Write ε(a, b) = −1
if (a, b) ≡ (0, 1) modulo 2 and ε(a, b) = 1 otherwise. It is straightforward to check
that

(−1)a−bε(−b,−a) = ε(a, b),

which shows the case p = 2.
Similarly, if a < 0 and b > 0, then we may apply(

a

b

)
=

(
b− a− 1

−a− 1

)
(−1)b+1 sgn(a− b) sgn(−a− 1)

as well as

(−1)bε(b− a,−a) = ε(a, b).

A derivation of the above binomial identities, which are valid for all a, b ∈ Z, may
be found in [Spr08]. �

Much simpler and well-known is the following congruence.

Lemma 5.2. Let p > 5 be a prime, and ε ∈ {−1, 1}. Then, for all integers r > 0,

(36)

pr−1∑
k=1,p-k

εk

k2
≡ 0 (mod pr).



MULTIVARIATE APÉRY NUMBERS AND SUPERCONGRUENCES 13

Proof. Let α be an odd integer, not divisible by p, such that α2 6≡ 1 modulo p
(take, for instance, α = 3). Then,

1

α2

pr−1∑
k=1,p-k

εk

k2
=

pr−1∑
k=1,p-k

εk

(αk)2
≡

pr−1∑
k=1,p-k

εk

k2
(mod pr),

since the second and third sum run over the same residues modulo pr (note that
εαk = εk since α is odd). As α2 is not divisible by p, the congruence (36) follows. �

The next lemmas establish properties of the summands of the numbers Aλ,ε(n) as
introduced in (20), which will be needed in our proof of Theorem 3.2. Throughout
this section, we fix the notation of Theorem 3.2, letting λ = (λ1, . . . , λ`) ∈ Z`>0

with d = λ1 + . . .+ λ` and setting s(j) = λ1 + . . .+ λj−1.

Lemma 5.3. Let n ∈ Zd, k ∈ Z, and define

(37) Aλ(n; k) =
∏̀
j=1

(
ns(j)+1 + . . .+ ns(j)+λj − (λj − 1)k

ns(j)+1 − k, . . . , ns(j)+λj − k, k

)
.

(a) If ` > 2, then, for all primes p and integers r > 1,

(38) Aλ(prn; pk) ≡ Aλ(pr−1n; k) (mod p2r).

(b) If ` > 2 and max(λ1, . . . , λ`) 6 2, then, for primes p > 5 and integers
r > 1,

(39) Aλ(prn; pk) ≡ Aλ(pr−1n; k) (mod p3r).

Proof. We show (38) and (39) by proving that for integers r, s > 1 and k such that
p - k,

(40) Aλ(prn; psk) ≡ Aλ(pr−1n; ps−1k) (mod pαr),

where α = 2 or α = 3 depending on whether max(λ1, . . . , λ`) 6 2.
Let us first consider the case ` > 2 and max(λ1, . . . , λ`) 6 2. Then each factor

of (37) is a single binomial, if λj = 1, or of the form(
m1

k

)(
m1 +m2 − k

m1

)
,

if λj = 2. Let p be a prime such that p > 5. It follows from Jacobsthal’s congruence
(34) that (

prm1

psk

)
/

(
pr−1m1

ps−1k

)
≡ 1 (mod pr+s+min(r,s))

as well as(
pr(m1 +m2)− psk

prm1

)
/

(
pr−1(m1 +m2)− ps−1k

pr−1m1

)
≡ 1 (mod pr+2 min(r,s)).

Consequently,

(41) Aλ(prn; psk) = cAλ(pr−1n; ps−1k)

with c ≡ 1 modulo pr+2 min(r,s). If s > r, this proves congruence (40) with α = 3.
On the other hand, suppose s 6 r. Since p - k, we have(

prn

psk

)
= pr−s

n

k

(
prn− 1

psk − 1

)
≡ 0 (mod pr−s).
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Since ` > 2, it follows that p2(r−s) divides Aλ(prn; psk). Since (r+ 2s) + 2(r− s) =
3r, the congruence (40), with α = 3, now follows from (41). This shows (b).

Let us now turn to the proof of (a). Assume that ` > 2. Note that, for any
positive integer ρ,(

m1 + . . .+mρ − (ρ− 1)k

m1 − k, . . . ,mρ − k, k

)
=

(
m1

k

)(
m1 + (m2 − k) + . . .+ (mρ − k)

m1,m2 − k, . . . ,mρ − k

)
,

so that, as in the previous case, p`(r−s) divides Aλ(prn; psk) if r > s.
Initially, assume that p > 3. By further unravelling the multinomial coefficient

as a product of binomial coefficients and applying Jacobsthal’s congruence (34) as
above, we find that

Aλ(prn; psk) = cAλ(pr−1n; ps−1k)

with c ≡ 1 modulo p3 min(r,s)−δ and δ = 0, if p > 5, and δ = 1, if p = 3. In light of
p2(r−s) dividing Aλ(prn; psk) if r > s, we conclude congruence (40) with α = 2.

Now, consider p = 2. If r > 2 and s > 2, then the sign ε in Jacobsthal’s
congruence (34) is always +1 when applying the above approach, and we again find
that (40) holds with α = 2. On the other hand, if r = 1, then it suffices to use the
(combinatorial) congruence (

pa

pb

)
≡
(
a

b

)
(mod p2),

which holds for all primes p. It remains to consider the case r > 2 and s = 1.
Applying the approach employed for p > 3, we find that

(42) Aλ(prn; psk) = cAλ(pr−1n; ps−1k),

where c ≡ ±1 modulo p3 min(r,s)−2 = 2. If max(λ1, . . . , λ`) 6 2, then we, in fact,
have c ≡ (−1)` modulo pr+2 min(r,s)−2 = 2r. Since Aλ(prn; psk) is divisible by
p`(r−1), congruence (40) trivially holds with α = 2 if ` > 3. Hence, we may assume
that ` = 2. If max(λ1, λ2) 6 2, then c ≡ 1 modulo 2r in (42) and, since both sides
of (42) are divisible by 22r−2, congruence (40) with α = 2 again follows. Finally,
suppose that there is j such that λj > 3. Then the factor corresponding to j in
(37) is of the form(
m1

k

)(
m1 +m2 − k

m1

)(
m1 +m2 +m3 − 2k

m3 − k

)(
m1 + . . .+mρ − (ρ− 1)k

m1 +m2 +m3 − 2k,m4 − k, . . .

)
.

Note that, for even m1,m2,m3 and odd k, the third binomial in this product is
even. Hence, Aλ(prn; psk) is divisible by 22(r−1)+1 = 22r−1. In light of (42), this
proves congruence (40) with α = 2. �

The next congruence, with k > 0, has been used in [Beu85]. For our present
purpose, we extend it to the case of negative k.

Lemma 5.4. For primes p, integers m, k and integers r > 1,

(43)

(
prm− 1

k

)
(−1)k ≡

(
pr−1m− 1

[k/p]

)
(−1)[k/p] (mod pr).

Proof. First, assume that k > 0. Following [Beu85, Lemma 2], we split the defining
product of the binomial coefficient, according to whether the index is divisible by
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p or not, to obtain(
prm− 1

k

)
=

k∏
j=1

prm− j
j

=

k∏
j=1,p-j

prm− j
j

[k/p]∏
λ=1

pr−1m− λ
λ

=

(
pr−1m− 1

[k/p]

) k∏
j=1,p-j

prm− j
j

.

Congruence (43), with k > 0, follows upon reducing modulo pr.
On the other hand, assume k < 0. Since (43) is trivial if m > 0, we let m 6 0.

We use the basic symmetry relation(
prm− 1

k

)
=

(
prm− 1

prm− k − 1

)
and note that, since k < 0, the binomials are zero unless prm− k− 1 > 0. Observe
that, for all integers k,m,

(44) [(prm− k − 1)/p] = pr−1m+ [−(k + 1)/p] = pr−1m− [k/p]− 1.

Thus, assuming prm− 1− k > 0, we may apply (43) to find(
prm− 1

k

)
(−1)k =

(
prm− 1

prm− k − 1

)
(−1)k

≡
(

pr−1m− 1

pr−1m− [k/p]− 1

)
(−1)[k/p](−1)p

rm+pr−1m

=

(
pr−1m− 1

[k/p]

)
(−1)[k/p](−1)p

rm+pr−1m (mod pr).

It only remains to note that prm+ pr−1m = pr−1(p+ 1)m is even unless p = 2 and

r = 1. Hence, in all cases, (−1)p
rm+pr−1m ≡ 1 modulo pr. �

Lemma 5.5. For primes p, integers m1,m2, k and integers r > 1,(
prm1 + prm2 − k − 1

prm1

)
≡
(
pr−1m1 + pr−1m2 − [k/p]− 1

pr−1m1

)
(mod pr).

Proof. By an application of (11),(
m1 +m2 − k − 1

m1

)
= sgn(m2 − k − 1)(−1)m2−k−1

(
−m1 − 1

m2 − k − 1

)
.

Since, for all a ∈ Z, sgn(a) = sgn([a/p]), the claimed congruence therefore follows
from (44) and Lemma 5.4. �

The following generalizes [Beu85, Lemma 3] to our needs.

Lemma 5.6. Let p be a prime and n ∈ Zd.

• Let ak ∈ Zp, with k ∈ Z, be such that, for all l, s ∈ Z with s > 0,∑
[k/ps]=l

ak ≡ 0 (mod ps).
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• Let C(n; k) be such that, for all k, r ∈ Z with r > 0,

(45) C(prn; k) ≡ C(pr−1n; [k/p]) (mod pr).

Then, for all r, l ∈ Z with r > 0,

(46)
∑

[k/pr]=l

akC(prn; k) ≡ 0 (mod pr).

Proof. The claim is trivial for r = 0. Fix r > 0 and assume, for the purpose of
induction on r, that the congruence (46) holds for the exponent r− 1 in place of r.
By the assumption (45) on C(n; k), we have that, modulo pr,∑

[k/pr]=l

akC(prn; k) ≡
∑

[k/pr]=l

akC(pr−1n; [k/p])

=
∑

[m/pr−1]=l

 ∑
[k/p]=m

ak

C(pr−1n;m)

= p
∑

[m/pr−1]=l

bmC(pr−1n;m),

where bm is the sequence

bm =
1

p

∑
[k/p]=m

ak.

We note that, for all s, l ∈ Z with s > 0,∑
[m/ps]=l

bm =
1

p

∑
[m/ps]=l

∑
[k/p]=m

ak =
1

p

∑
[k/ps+1]=m

ak ≡ 0 (mod ps),

so that we may apply our induction hypothesis (46) with r − 1 to conclude∑
[k/pr]=l

akC(prn; k) = p
∑

[m/pr−1]=l

bmC(pr−1n;m) ≡ 0 (mod pr).

The claim therefore follows by induction. �

We are now in a comfortable position to prove Theorem 3.2.

Proof of Theorem 3.2. In terms of the numbers Aλ,ε(n; k), defined in (37), we have

Aλ,ε(n) =
∑
k>0

εkAλ(n; k) =
∑
s>0

Gs(n),

where

Gs(n) =
∑
p-k

εp
skAλ(n; psk).

Suppose that ` > 2. Further, suppose that p > 3, or that p = 2 and ε = 1. Then

εp
sk = εp

s−1k, and it follows from Lemma 5.3 that, for s > 1,

Gs(p
rn) ≡ Gs−1(pr−1n) (mod p2r).

In order to prove that Aλ,ε(p
rn) ≡ Aλ,ε(p

r−1n) modulo p2r, it therefore remains
only to show that G0(prn) ≡ 0 modulo p2r. This, however, is immediate because,
as observed in the proof of Lemma 5.3, Aλ(prn; k), with p - k, is divisible by p`r.
This proves congruence (21).
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Now, suppose that ` > 2 and max(λ1, . . . , λ`) 6 2. Let p be a prime such that

p > 5. It again follows from εp
sk = εp

s−1k and Lemma 5.3 that, for s > 1,

Gs(p
rn) ≡ Gs−1(pr−1n) (mod p3r).

To prove thatAλ,ε(p
rn) ≡ Aλ,ε(pr−1n) modulo p3r, we have to show thatG0(prn) ≡

0 modulo p3r. As in the previous case, this is trivial if ` > 3. We thus assume ` = 2.
Note that, since max(λ1, . . . , λ`) 6 2, each factor of Aλ(n; k) is of the form(

m1

k

)
, or

(
m1

k

)(
m1 +m2 − k

m1

)
.

Using the basic identity (
m1

k

)
=
m1

k

(
m1 − 1

k − 1

)
,

it is clear that the numbers

Bλ(n; k) =
k2

n1n1+λ1

Aλ(n; k)

are integers. Moreover, it follows from Lemmas 5.4 and 5.5, and the fact that ` = 2,
that the integers Cλ(n; k) = Bλ(n; k + 1) satisfy, for all k, r ∈ Z with r > 0,

C(prn; k) ≡ C(pr−1n; [k/p]) (mod pr).

If p - k then [(k − 1)/p] = [k/p] so that, in particular,

C(prn, k − 1) ≡ C(prn, [k/p]) ≡ C(prn; k) (mod pr).

By construction,

G0(prn) = p2rn1n1+λ1

∑
p-k

εk

k2
C(prn; k − 1),

so that, in order to show that G0(prn) ≡ 0 modulo p3r, it suffices to prove

(47)
∑
p-k

εk

k2
C(prn; k) ≡ 0 (mod pr).

Define ak = εk/k2, if p - k, and ak = 0 otherwise. Since p > 5, it follows from
Lemma 5.2 that, for all l, s ∈ Z with s > 0,∑

[k/ps]=l

ak =

ps−1∑
k=1,p-k

εlp
s+k

(lps + k)2
≡ εl

ps−1∑
k=1,p-k

εk

k2
≡ 0 (mod ps).

Hence, the conditions of Lemma 5.6 are met, allowing us to conclude that∑
p-k

εk

k2
C(prn; k) =

∑
l

∑
[k/pr]=l

akC(prn; k) ≡ 0 (mod pr).

This shows (47) and completes our proof. �
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16(1):138–146, February 1983.

[MV13] A. Mellit and M. Vlasenko. Dwork’s congruences for the constant terms of powers of a
Laurent polynomial. Preprint, June 2013. Available at: http://arxiv.org/abs/1306.

5811.

[OS11] R. Osburn and B. Sahu. Supercongruences for Apéry-like numbers. Advances in Applied
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