
Gessel–Lucas congruences for sporadic sequences

Armin Straub*

Department of Mathematics and Statistics
University of South Alabama

January 28, 2023

Abstract

For each of the 15 known sporadic Apéry-like sequences, we prove congruences mod-
ulo p2 that are natural extensions of the Lucas congruences modulo p. This extends
a result of Gessel for the numbers used by Apéry in his proof of the irrationality of
ζ(3). Moreover, we show that each of these sequences satisfies two-term supercongru-
ences modulo p2r. Using special constant term representations recently discovered by
Gorodetsky, we prove these supercongruences in the two cases that remained previously
open.

1 Introduction

Sequences A(n) that are integer solutions of either the three-term recurrence

(n+ 1)2A(n+ 1) = (an2 + an+ b)A(n)− cn2A(n− 1), (1)

or the three-term recurrence

(n+ 1)3A(n+ 1) = (2n+ 1)(an2 + an+ b)A(n)− n(cn2 + d)A(n− 1), (2)

subject to the initial conditions A(−1) = 0, A(0) = 1, are known as Apéry-like sequences.
For instance, if (a, b, c, d) = (17, 5, 1, 0), then the solution to (2) is the integer sequence

A(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)2

, (3)

which formed the basis of Apéry’s proof [Apé79], [Poo79] of the irrationality of ζ(3).
Systematic searches for Apéry-like sequences have been conducted by Zagier [Zag09] in
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the case of (1), and by Almkvist–Zudilin [AZ06] and Cooper [Coo12] in the case of
(2). After normalizing, and apart from degenerate cases as well four hypergeometric
and four Legendrian solutions in each case, only a small number of sporadic solutions
have been found. Namely, Zagier [Zag09] found six sporadic solutions to (1), labeled
A,B,C,D,E,F . Almkvist–Zudilin [AZ06] found six corresponding sporadic solutions to
(1), labeled (α), (γ), (δ), (ε), (η), (ζ), and Cooper [Coo12] found three additional sporadic
solutions to (1) with d 6= 0, labeled s7, s10, s18. Explicit formulas for the sequences (γ),
F , (δ), D can be found in (3), (10), (15), (18), respectively. Tables of all 6 + 6 + 3 = 15
sequences, including known representations as binomial sums such as (3) can be found, for
instance, in [MS16], [OSS16] or [Gor21].

One reason that Apéry-like sequences have received attention in the literature is that
they share (or, are believed to share) various remarkable arithmetic properties. For in-
stance, they are connected to modular forms in different ways [SB85], [Beu87], [AO00],
[OS19] and they satisfy unusually strong congruences [Beu85], [Cos88], [CCS10], [OS11],
[OS13], [Str14], [OSS16], [AT16], [Gor19], [Gor21] that were coined supercongruences by
Beukers. As we review in Section 3, these have been proven by various authors for 13 of the
15 sequences. We prove the supercongruences for one of the previously conjectural cases,
namely the sequence labeled F . For the other missing sequence, labeled (δ) and known
as the Almkvist–Zudilin numbers, we prove a weaker version of the congruences which,
however, is sufficient for our present purposes. Combined with the previously known cases,
this results in the following uniform result.

Theorem 1.1. Let A(n) be one of the 6 + 6 + 3 known sporadic Apéry-like sequences.
Then, for all primes p ≥ 3 and all positive integers n, r,

A(prn) ≡ A(pr−1n) (mod p2r).

As indicated above, Theorem 1.1 was previously known except in the two cases F
and (δ). We prove these two new cases as Theorems 3.2 and 3.3 in Section 3. We note
that the restriction to primes p ≥ 5, or p ≥ 3 in the case of Theorem 1.1, is natural
for supercongruences due to Lemma 2.1. Numerical evidence suggests that Theorem 1.1
also holds for p = 2 except for the three sequences labeled B, (δ) and (η). We will not
attempt to discuss the case p = 2 in further detail here. We note that, in the literature,
the case p = 3 of Theorem 1.1 in the previously known cases is not always discussed in
detail. However, the arguments, which for primes p ≥ 5 yield slightly stronger congruences
due to Lemma 2.1, still apply for p = 3 and the resulting congruences are sufficient for
Theorem 1.1.

As another instance of a special arithmetic property, Gessel showed [Ges82, Theorem
1] that the Apéry numbers (3) satisfy the congruences

A(n) ≡ A(n0)A(n1) · · ·A(nr) (mod p), (4)

where n = n0+n1p+· · ·+nrpr is the p-adic expansion of n. The congruences (4) are known
as Lucas congruences because they are of the same kind as the congruences that Lucas
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[Luc78] showed for the binomial coefficients. Various sequences and families of sequences
have since been shown [McI92], [Gra97], [SvS15], [RY15], [MS16], [Del18], [ABD19], [Gor21]
to satisfy the Lucas congruences. For a historical survey, we further refer to [Me4].

In particular, it turns out that, as shown by Malik and the author [MS16] (see also
[Gor21]), each sporadic Apéry-like sequence A(n) satisfies the Lucas congruences.

Theorem 1.2 ([MS16]). Let A(n) be one of the 6 + 6 + 3 known sporadic Apéry-like
sequences. Then, for all primes p and all integers n, k with 0 ≤ k < n,

A(pn+ k) ≡ A(k)A(n) (mod p). (5)

By iterating, one sees that the congruences (5) are equivalent to the the Lucas con-
gruences (4). Gessel [Ges82] further proved an extension of the Lucas congruences for the
Apéry numbers (3) modulo p2. The second main result of this paper is to prove correspond-
ing congruences for all known sporadic Apéry-like sequences. This results in the following
extension of Theorem 1.2 modulo p2.

Theorem 1.3. Let A(n) be one of the 6 + 6 + 3 known sporadic Apéry-like sequences.
Then, for all primes p ≥ 3 and all integers n, k with 0 ≤ k < n,

A(pn+ k) ≡ A(k)A(n) + pnA′(k)A(n) (mod p2). (6)

We will refer to the congruences (6) as Gessel–Lucas congruences modulo p2. For a pre-
cise definition of the formal derivative A′(n), we refer to Section 4. However, for certain of
the sequences, A′(n) can be obtained as the actual derivative d

dnA(n) of a natural interpola-
tion of A(n). We prove Theorem 1.3 in Section 5 by extending the proof of Gessel [Ges82],
who proved the congruences (6) for the Apéry numbers (3). To our knowledge, the Gessel–
Lucas congruences (6) had not been previously observed for the other sequences covered
by Theorem 1.3. A crucial ingredient for the proof is Theorem 1.1, the supercongruences
satisfied by each sporadic sequence.

The reductions modulo prime powers pr of certain sequences A(n), such as diagonals of
rational functions and constant terms, can be described using the notion of linear p-schemes
that was recently introduced by Rowland and Zeilberger [RZ14]. Using the language found
in [Beu22], a linear p-scheme modulo pr for A(n) with s states consists of a vector of
sequences A(n) = (A1(n), . . . , As(n)), with A1(n) = A(n), as well as matrices M(k) for
k ∈ {0, 1, . . . , p− 1} such that

A(pn+ k) ≡M(k)A(n) (mod pr)

for all integers n, k with 0 ≤ k < n. Based on earlier work of Rowland and Yassawi
[RY15], Rowland and Zeilberger describe in [RZ14] algorithms to compute linear p-schemes
for the values modulo pr of a sequence A(n) = ct[P (x)nQ(x)] of constant terms, where
P,Q ∈ Z[x±1] are Laurent polynomials in x = (x1, . . . , xd). As done in [RY15] and [Str22],
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one can derive upper bounds for the number of states for the p-schemes produced by these
algorithms. However, as pointed out by Beukers [Beu22], these bounds appear inefficient
except in small cases.

On the other hand, it appears to be an interesting and fruitful question to ask for
general results to describe sequences whose reductions modulo pr can be expressed using
linear p-schemes with few states. For instance, as observed in [HS22], a sequence A(n)
satisfies the Lucas congruences (4) modulo p if and only if its modulo p reductions can be
encoded by a linear p-scheme with a single state. One way to interpret Theorem 1.3 is that
it provides explicit two-state linear p-schemes for all sporadic Apéry-like sequences modulo
p2. It would be of considerable interest to better understand which other sequences share
this property generalizing the classical Lucas congruences.

2 Notation and basic congruences

Suppose that k = (k1, . . . , k`) is a tuple of nonnegative integers adding up to n, that is,
|k| = k1 + k2 + · · ·+ k` = n. Then we denote the corresponding multinomial coefficient as(

n

k

)
=

(
n

k1, . . . , k`

)
=

n!

k1!k2! · · · k`!
.

Throughout the paper, we use typical notation and write, for instance, λk as short for
(λk1, λk2, . . . , λk`).

The following version of Jacobsthal’s binomial congruence is proved in [Ges83] and
[Gra97] (and is extended in [Str14] to binomial coefficients which are allowed to have
negative entries).

Lemma 2.1. For primes p ≥ 5, and integers n, k and r, s ≥ 1,(
prn

psk

)
/

(
pr−1n

ps−1k

)
≡ 1 (mod pr+s+min(r,s)). (7)

For primes p = 3, respectively p = 2, the congruence (7) holds modulo pr+s+min(r,s)−1,
respectively pr+s+min(r,s)−2.

Also note that, if p - k and s ≤ r, then we have the much simpler congruence(
prn

psk

)
= pr−s

n

k

(
prn− 1

psk − 1

)
≡ 0 (mod pr−s). (8)

Finally, for the proof of our main result, we record the following observation concerning
Cooper’s sporadic sequences s7, s10, s18.

Lemma 2.2. If A(n) is one of the 3 known sporadic Apéry-like sequences that satisfy (2)
with d 6= 0 then, for all primes p,

A(p− 1) ≡ 0 (mod p).

Proof. This is a special case of [MS16, Theorem 6.6] and the discussion preceding it.
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3 Supercongruences

It was observed by Beukers [Beu85] that the Apéry numbers satisfy congruences of a certain
type that are stronger than what is predicted by formal group theory. Such supercongru-
ences were further studied by Coster [Cos88] who showed that the Apéry numbers satisfy

A(prn) ≡ A(pr−1n) (mod p3r)

for all primes p ≥ 5. The case r = 1 of these congruences had previously been observed
by Gessel [Ges82]. Since then supercongruences have been established for other Apéry-like
sequences [OS11], [OS13], [OSS16], [Gor19], [Gor21]. In fact, numerical evidence suggests
that all Apéry-like sequences satisfy supercongruences. More precisely, the following con-
jecture appears in [OSS16].

Conjecture 3.1. Let A(n) be one of the 6 + 6 + 3 known sporadic Apéry-like sequences.
Then, for all primes p ≥ 5 and all positive integers n, r,

A(prn) ≡ A(pr−1n) (mod pλr) (9)

where λ = 3 except in the five cases B, C, E, F and s18 in which case λ = 2.

The four cases A, D, (γ), s10 follow from Coster’s work [Cos88]. Osburn and Sahu
proved the case C in [OS11] as well as the cases E and (α) in [OS13]; together with the
author, they further established the cases (ε), (η), s7 and s18 in [OSS16]. More recently,
Gorodetsky proved the case (ζ) in [Gor19] as well as the case B [Gor21].

In Theorem 3.2, we prove the previously open case F of Conjecture 3.1. For the final
missing case (δ), we prove in Theorem 3.3 a weaker version of Conjecture 3.1 where the
conjectured exponent λ = 3 is replaced with λ = 2. The crucial ingredient for these
proofs are suitable constant terms expressions that were recently obtained by Gorodetsky
[Gor21]. Combined with the previously known cases, this proves Theorem 1.1, which is
the weaker version of Conjecture 3.1 where λ = 2 for all sequences. While the case (δ)
of Conjecture 3.1 remains open in general, we note that Amdeberhan and Tauraso [AT16]
prove the case r = 1 of the corresponding conjectured supercongruences (9).

We recall that the sporadic Apéry-like sequence labeled F by Zagier [Zag09] is the
sequence

AF (n) =

n∑
k=0

(−1)k8n−k
(
n

k

) k∑
l=0

(
k

l

)3

, (10)

which solves the three-term recurrence (1) with (a, b, c) = (17, 6, 72).

Theorem 3.2. For all primes p ≥ 3 and all positive integers n, r,

AF (prn) ≡ AF (pr−1n) (mod p2r).
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Proof. By expressing AF (n) as the constant term of Λ(x, y)n where

Λ(x, y) =
(x− y + 1)(y − x+ 1)(x+ y − 1)(x+ y + 1)(x2 + y2 + 1)

(xy)2
,

Gorodetsky [Gor21] obtained the alternative representation

AF (n) =
∑

(a,b,c,d,e)∈U(n)

(−1)a1+b2+c3
(
n

a

)(
n

b

)(
n

c

)(
n

d

)(
n

e

)

as a multiple binomial sum. Here, the sum is over the set

U(n) =

(a, b, c,d, e) ∈ Z15
≥0 :

a1 + a2 + a3 = n
b1 + b2 + b3 = n
c1 + c2 + c3 = n
d1 + d2 + d3 = n
e1 + e2 + e3 = n

,
ai + bi + ci + di + 2ei = 2n

for each i ∈ {1, 2, 3}

 .

In the sequel, we use the notation k = (a, b, c,d, e) ∈ Z15
≥0. As usual, we say that p divides

k (and write p|k) if p divides each component of k. If k ∈ U(n), then we write

B(k) := (−1)a1+b2+c3
(
n

a

)(
n

b

)(
n

c

)(
n

d

)(
n

e

)
.

Using this notation, we have

AF (prn) =
∑

k∈U(prn)

B(k) =
∑

k∈U(prn)
p|k

B(k) +
∑

k∈U(prn)
p-k

B(k). (11)

We claim (and will show below) that, for all primes p ≥ 3 and all k ∈ U(prn), we have

B(k) ≡ B(k/p)
(
mod p2r

)
(12)

where the right-hand side is to be interpreted as 0 if p - k. Combining (11) and (12), we
conclude that

AF (prn) ≡
∑

k∈U(prn)
p|k

B(k/p) =
∑

k∈U(pr−1n)

B(k) = AF (pr−1n) (mod p2),

which is what we set out to prove. Note that the middle equality uses that k ∈ U(pr−1n)
if and only if pk ∈ U(prn).

It therefore only remains to prove (12). First, consider the case k ∈ U(prn) with p - k.
Without loss of generality, we may assume that p - ai for some i ∈ {1, 2, 3} (otherwise,
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the same argument applies with ai replaced by one of bi, ci, di, ei). It follows from the
constraint ai + bi + ci + di + 2ei = 2prn that at least one of bi, ci, di, ei is also not divisible
by p (note that we excluded the case p = 2 so that the factors of 2 in the constraint can
be ignored). Without loss, we assume that p - bi. Note that we have the divisibility(

prn

ai

)(
prn

bi

)
| B(k), (13)

and that, by (8), the two binomial coefficients on the left-hand side are each divisible by
pr. It follows that B(k) is divisible by p2r, which proves congruence (12) in the case p - k.

Finally, consider (12) in the case p|k. Write s = min(νp(a1), r) and t = min(νp(a2), r)
and suppose that s ≥ t (this is no loss of generality; otherwise, we can swap a1 and a2
throughout the proof). Consequently, a3 = prn − a1 − a2 is divisible by pt as well. It
follows from Lemma 2.1 applied to each binomial coefficient on the right-hand side of(

prn

a

)
=

(
prn

a1

)(
prn− a1

a2

)
(note that ps divides prn− a1), together with p|a, that(

prn

a

)
/

(
pr−1n

a/p

)
≡ 1 (mod ps+2t−ε),

where ε = 0 if p ≥ 5 and ε = 1 if p = 3. The same argument applies with b, c,d, e in
place of a. Suppose that the value of the quantity s+ 2t is smallest for a compared to the
corresponding values for b, c,d, e (this is no loss of generality; otherwise, we can swap a
for one of b, c,d, e in the remaining argument). We therefore have

B(k)

B(k/p)
≡ 1 (mod ps+2t−ε). (14)

If t = r, then the claim follows and we are done. Otherwise, νp(a2) = t < r. It follows from
the constraint ai+bi+ci+di+2ei = 2prn that at least one of b2, c2, d2, e2 is not divisible by
pt+1. Without loss of generality, suppose that νp(b2) ≤ t. Note that we have the divisibility
(13) with i = 2 and that, by (8), the two binomial coefficients on the left-hand side of (13)
are each divisible by pr−t. This shows that B(k) is divisible by p2r−2t. Combining this
with (14), we conclude that

B(k) ≡ B(k/p)
(
mod p2r+s−ε

)
for all k ∈ U(prn) with p|k. Since s ≥ 1 and ε ∈ {0, 1}, this is slightly stronger, in the
case p|k, than the claimed congruences (12).
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The same argument we used to prove Theorem 3.2 applies similarly to the sporadic
Apéry-like sequence labeled (δ) by Almkvist–Zudilin [AZ06]. This sequence has the bino-
mial sum representation

Aδ(n) =
n∑
k=0

(−1)k3n−3k
(
n

3k

)(
n+ k

n

)
(3k)!

k!3
, (15)

solves the three-term recurrence (2) with (a, b, c, d) = (7, 3, 81, 0), and is also known as
the Almkvist–Zudilin numbers. Combined with Theorem 3.2, the following proves Theo-
rem 1.1.

Theorem 3.3. For all primes p ≥ 3 and all positive integers n, r,

Aδ(p
rn) ≡ Aδ(pr−1n) (mod p2r).

Proof. By expressing Aδ(n) as the constant term of Λ(x, y, z)n where

Λ(x, y, z) =
(x+ y − 1)(x+ z + 1)(y − x+ z)(y − z + 1)

xyz
,

Gorodetsky [Gor21] obtained the alternative representation

Aδ(n) =
∑

(a,b,c,d)∈U(n)

(−1)a2+b1+d3
(
n

a

)(
n

b

)(
n

c

)(
n

d

)
as a multiple binomial sum. Here, the sum is over the set

U(n) =

(a, b, c,d) ∈ Z12
≥0 :

a1 + a2 + a3 = n
b1 + b2 + b3 = n
c1 + c2 + c3 = n
d1 + d2 + d3 = n

,
b1 + c1 + d1 = n
a1 + b2 + d2 = n
a2 + b3 + c2 = n

 .

As in the proof of Theorem 3.2, we consider

B(k) := (−1)a2+b1+d3
(
n

a

)(
n

b

)(
n

c

)(
n

d

)
for k = (a, b, c,d) ∈ U(n). The same argument as for the congruences (12) applies and
allows us to show that, again, B(k) ≡ B(k/p) modulo p2r, with the understanding that
B(k/p) = 0 if p - k. As a consequence, we once more conclude that

Aδ(p
rn) =

∑
k∈U(prn)

p|k

B(k) +
∑

k∈U(prn)
p-k

B(k)

≡
∑

k∈U(prn)
p|k

B(k/p) =
∑

k∈U(pr−1n)

B(k) = Aδ(p
r−1n) (mod p2),

as claimed.
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4 The formal derivative of recurrence sequences

Suppose that c0(n), . . . , cr(n) ∈ Z[n] are polynomials with c0(0) = 0 or, equivalently,
c0(n) ∈ nZ[n] and c0(n) 6= 0 for all n ∈ Z>0. Then there exists a unique sequence A(n)
which satisfies the linear recurrence recurrence

r∑
j=0

cj(n)A(n− j) = 0 (16)

for all n ≥ 0, subject to the initial conditions A(0) = 1 and A(j) = 0 for j < 0. In the
sequel, our interest will be limited to the cases where recursion (16) is either (1) or (2).
In particular, for our purposes we have r = 2. Note that, for (1) or (2) only the initial
condition A(0) = 1 is significant because in (16) with n = 1 the term involving A(−1)
vanishes due to c2(1) = 0.

Suppose further that c0(n) ∈ n2Z[n] (which is satisfied for the recurrences (1) and
(2)). Then we can introduce the formal derivative A′(n) of A(n) as the unique sequence
satisfying

r∑
j=0

cj(n)A′(n− j) +
r∑
j=0

c′j(n)A(n− j) = 0 (17)

(where c′j(n) = d
dncj(n) is the ordinary derivative of the polynomial cj(n)), subject to the

initial conditions A′(j) = 0 for j ≤ 0.
We note that, in some cases, the formal derivative A′(n) can be obtained as a usual

derivative of a natural interpolation of A(n). Namely, suppose that the sequence A(n) can
be extended to a smooth function A(n) that is defined for all real n, or a suitable subset of
the reals, in such a way that (16) holds for all such n. By differentiating (16), it then follows
that the usual derivative d

dnA(n) satisfies the recursion (17). Therefore, provided that the
initial conditions line up as well, the usual derivative agrees with the formal derivative
defined above. This is illustrated in Example 4.1. We then indicate in Example 4.2 that
the same conclusion can still be drawn if, instead of (16), the extension of A(n) to real
n satisfies an inhomogeneous recurrence with an additional term that (together with its
derivative) vanishes when n is an integer.

Example 4.1. The sporadic sequence D (which is connected to ζ(2) in the same way that
the Apéry numbers (3) are connected to ζ(3)) is given by

AD(n) =
n∑
k=0

(
n

k

)2(n+ k

k

)
(18)

and solves (1) with (a, b, c) = (11, 3,−1). The sequence A′D(n) is therefore characterized
by solving the recurrence

(n+ 1)2A′D(n+ 1) = (11n2 + 11n+ 3)A′D(n) + n2A′D(n− 1) (19)

−2(n+ 1)AD(n+ 1) + 11(2n+ 1)AD(n) + 2nAD(n− 1)
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with A′D(0) = 0 (note that we don’t actually need an additional initial value for A′D(−1)).
The resulting initial values for A′D(n) for n = 1, 2, . . . are

5,
75

2
,

1855

6
,

10875

4
,

299387

12
,

943397

4
,

63801107

28
,

1253432797

56
, . . .

Indeed, one can show (for instance, using creative telescoping) that the formal derivative
has the explicit formula

A′D(n) = 5

n∑
k=0

(
n

k

)2(n+ k

k

)
(Hn −Hk) (20)

involving harmonic sums. On the other hand, the series

AD(x) =

∞∑
k=0

(
x

k

)2(x+ k

k

)
converges for complex x with Re x > −1 and therefore defines an interpolation of the
sporadic sequence AD(n). As shown in [OS19], this interpolation satisfies the homogeneous
functional equation

(x+ 1)2AD(x+ 1)− (11x2 + 11x+ 3)AD(x)− x2AD(x− 1) = 0

for all complex x with Re x > −1 (this is (1) with (a, b, c) = (11, 3,−1)). We can then
differentiate this equation to obtain (19). By verifying that the derivative of AD(x) vanishes
for x = 0, we conclude that, for positive integers n, the values A′D(n) in (20) agree with
the values of the actual derivative of the interpolation AD(x).

Example 4.2. In a similar way, Zagier [Zag18, Section 7] interpolates the Apéry numbers
A(n), defined by the binomial sum (3), using the series

A(x) =
∞∑
k=0

(
x

k

)2(x+ k

k

)2

,

which is well-defined for all complex x. Somewhat surprisingly, Zagier showed that, unlike
the previous example, the interpolation A(x) satisfies the functional equation (see [OS19]
for an algorithmic derivation using creative telescoping)

(x+ 1)3A(x+ 1)− (2x+ 1)(17x2 + 17x+ 5)A(x) + x3A(x− 1) =
8

π2
(2x+ 1) sin2(πx)

which is an inhomogeneous version of the recurrence (2) with (a, b, c, d) = (17, 5, 1, 0)
satisfied the Apéry numbers. However, note that the inhomogeneous term and its derivative
vanish for any integer x. We can therefore conclude as in the previous example that, for
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positive integers n, the values A′(n) of the formal derivative agree with the derivative values
of Zagier’s interpolation. As recorded by Gessel [Ges82], these are given by

A′(n) = 2
n∑
k=0

(
n

k

)2(n+ k

k

)2

(Hn+k −Hn−k).

Remark 4.3. Write F (x) =
∑

n≥0A(n)xn. Then the recurrence (16) translates into the
differential equation

r∑
j=0

cj(θ)x
jF (x) = 0, (21)

where θ = x d
dx is the Euler operator. Note that c0(n) is the indicial polynomial of this

differential equation. Since we assumed that c0(n) ∈ n2Z[n] and c0(n) 6= 0 for all n ∈ Z>0,
it follows that, up to scaling, F (x) is the unique power series solution of (21). Moreover, if
we set G(x) =

∑
n≥0A

′(n)xn, then we claim that log(x)F (x)+G(x) is a second solution of
(21). To see this, note that it follows inductively from θ log(x)F (x) = log(x)θF (x) + F (x)
that θk log(x)F (x) = log(x)θkF (x) + kθk−1F (x). Consequently, we have

c(θ) log(x)F (x) = log(x)c(θ)F (x) + c′(θ)F (x)

for any polynomial c(n) ∈ C[n]. On the other hand, we readily verify that c(θ)xj =
xjc(θ + j). Applying these formulae, as well as using (21), we find

r∑
j=0

cj(θ)x
j log(x)F (x) =

r∑
j=0

xjcj(θ + j) log(x)F (x)

=
r∑
j=0

xj(log(x)cj(θ + j)F (x) + c′j(θ + j)F (x))

=
r∑
j=0

xjc′j(θ + j)F (x)

=

r∑
j=0

c′j(θ)x
jF (x).

Hence,

r∑
j=0

cj(θ)x
j(log(x)F (x) +G(x)) =

r∑
j=0

[cj(θ)x
jG(x) + c′j(θ)x

jF (x)] = 0,

where the final equality follows from the equivalent recursion (17) for the coefficients.
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5 Gessel–Lucas congruences modulo p2

We are now in a convenient position to prove Theorem 1.3, which is restated below for
convenience. This an extension of Gessel’s result [Ges82, Theorem 4] for the Apéry numbers
and our proof proceeds along the same lines, with an extra argument required for the three
sporadic Apéry-like sequences that satisfy (2) with d 6= 0. Here, the formal derivative A′(n)
is as introduced in Section 4.

Theorem 5.1. Let A(n) be one of the 6 + 6 + 3 known sporadic Apéry-like sequences.
Then, for all primes p ≥ 3 and all integers n, k with 0 ≤ k < n,

A(pn+ k) ≡ A(k)A(n) + pnA′(k)A(n) (mod p2). (22)

Proof. By Theorem 1.2, each sporadic Apéry-like sequence A(n) satisfies the Lucas con-
gruences. That is, A(pn+ k) ≡ A(k)A(n) modulo p. We therefore have

A(pn+ k) ≡ A(k)A(n) + pa(n, k) (mod p2)

for some a(n, k) ∈ Zp. Our goal is to show that a(n, k) ≡ nA′(k)A(n) (mod p).
By the case r = 1 of the supercongruences in Theorem 1.1, we know that each of the

sequences A(n) in question satisfies the congruences

A(pn) ≡ A(n) (mod p2).

This verifies the case k = 0 in (22) because, by our definition, A′(0) = 0. In the sequel, we
therefore assume that k ≥ 1.

Substituting n by pn + k in the recurrence (16) for A(n), which is either of the form
(1) or of the form (2), we have

r∑
j=0

cj(pn+ k)A(pn+ k − j) = 0

for all n, k ∈ Z≥0. If we normalize c0(n) = nλ with λ ∈ {2, 3}, then c2(n) = c(n − 1)2 or
c2(n) = (n− 1)(c(n− 1)2 + d) depending on whether (16) is of the form (1) or of the form
(2).

We claim that the terms with k − j < 0 do not contribute modulo p2. Note that
k − j < 0 only if k = 1, j = 2, so that we need to show that cj(pn + k)A(pn + k − j) =
c2(pn + 1)A(pn − 1) is divisible by p2. We note that c2(pn + 1) is divisible by p2 unless
we have c2(n) = (n − 1)(c(n − 1)2 + d) with d 6= 0. In that latter case, which consists of
the 3 known sporadic Apéry-like sequences that satisfy (2) with d 6= 0, c2(pn + 1) is only
divisible by p. However, in those cases, we can combine Lemma 2.2, by which A(p− 1) is
divisible by p, with the Lucas congruences (5) to conclude that

A(pn− 1) = A(p(n− 1) + p− 1) ≡ A(n− 1)A(p− 1) ≡ 0 (mod p).
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This shows that, in all cases, c2(pn+ 1)A(pn− 1) is divisible by p2.
Since the terms with k− j < 0 do not contribute modulo p2 (and because A(j) = 0 for

j < 0), we can apply the Lucas congruences to obtain

r∑
j=0

cj(pn+ k)(A(k − j)A(n) + pa(n, k − j)) ≡ 0 (mod p2),

with the understanding that a(n, j) = 0 if j < 0. Using the Taylor expansion of the
polynomials cj(n), this becomes

r∑
j=0

(cj(k) + pnc′j(k))(A(k − j)A(n) + pa(n, k − j)) ≡ 0 (mod p2).

Expanding, followed by applying the recurrence (16), this is equivalent to

r∑
j=0

(cj(k)a(n, k − j) + nc′j(k)A(k − j)A(n)) ≡ 0 (mod p). (23)

Since c0(n) = nλ with λ ∈ {2, 3}, we have c0(k) 6≡ 0 (mod p) for all k ∈ {1, 2, . . . , p − 1}.
Therefore, the congruence (23) together with a(n, 0) = 0 characterizes the values modulo
p of a(n, k) for k ∈ {1, 2, . . . , p− 1}.

On the other hand, replacing n by k in (17), and multiplying with nA(n), we find

r∑
j=0

(cj(k)nA′(k − j)A(n) + nc′j(k)A(k − j)A(n)) = 0.

Comparison with (23) shows that a(n, k) ≡ nA′(k)A(n) (mod p), which is what we set out
to show.

6 Conclusions

Samol and van Straten [SvS15] (see also [MV16]) showed that, if the Newton polytope of
a Laurent polynomial P (x) ∈ Z[x±1], with x = (x1, . . . , xd), has the origin as its only
interior integral point, then A(n) = ct[P (x)n], the sequence formed by the constant terms
of powers of P (x), satisfies the Dwork congruences

A(prm+ n)A(bn/pc) ≡ A(pr−1m+ bn/pc)A(n) (mod pr) (24)

for all primes p and all integers m,n ≥ 0, r ≥ 1. The case r = 1 of these congruences is
equivalent to the Lucas congruences (4). In a similar spirit, is there a natural extension of
the Gessel–Lucas congruences that we prove in Theorem 1.3 to modulus p2r? Presumably,
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such an extension should also contain the supercongruences of Theorem 1.1 as a special
case.

In another direction, it is natural to investigate an extension of Theorem 1.3 modulo
p3. More generally, it would be of interest to understand the minimal number of states
required for a linear p-scheme describing sporadic Apéry-like sequences modulo pr. We
refer to recent work of Beukers [Beu22] for recent promising progress in this regard.

Recently, through a careful and clever search, Gorodetsky was able to find new constant
term representations [Gor21] for several of the sporadic Apéry-like sequences. Combined
with the result of Samol and van Straten, these can be used to establish Theorem 1.2 for 14
of the 15 sporadic sequences. In the case of the sporadic sequence (η), however, we presently
only have the lengthy and technical proof given in [MS16]. It would of interest to also find
a suitable constant term representation for the sporadic sequence (η). More generally,
it would be valuable to have general results in the spirit of [SvS15] that would allow us
to prove Theorem 1.3 in the presence of suitable constant term expressions. However,
while the result of Samol and van Straten [SvS15] shows that large families of sequences
satisfy the Lucas congruences, the congruences in Theorem 1.3 are considerably more rare.
In particular, we note that the congruences (6) imply the congruences A(pn) ≡ A(n)
(mod p2), which are an instance of the supercongruences discussed in Section 3.

Acknowledgements. The author is grateful to Frits Beukers for interesting discus-
sions, motivation, and for sharing early versions of the paper [Beu22].
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Theory, 21(2):141–155, October 1985.

14



[Beu87] Frits Beukers. Another congruence for the Apéry numbers. Journal of Number
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