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Abstract

A special case of an elegant result due to Anderson proves that the
number of (s, s + 1)-core partitions is finite and is given by the Catalan
number Cs. Amdeberhan recently conjectured that the number of (s, s +
1)-core partitions into distinct parts equals the Fibonacci number Fs+1.
We prove this conjecture by enumerating, more generally, (s, ds− 1)-core
partitions into distinct parts. We do this by relating them to certain
tuples of nested twin-free sets.

As a by-product of our results, we obtain a bijection between parti-
tions into distinct parts and partitions into odd parts, which preserves
the perimeter (that is, the largest part plus the number of parts minus 1).
This simple but curious analog of Euler’s theorem appears to be missing
from the literature on partitions.

1 Introduction

A partition λ of n (for very good introductions see [And76] and [AE04]) is a
finite sequence (λ1, λ2, . . . , λ`) of positive integers λ1 ≥ λ2 ≥ · · · ≥ λ` such
that λ1 + λ2 + . . . + λ` = n. The integers λ1, λ2, . . . , λ` are referred to as the
parts of λ, with λ1 being the largest part and ` the number of parts. Such a
partition λ is frequently represented by its Young diagram, which we take to be
a left-justified array of square cells with ` rows such that the ith row consists of
λi cells. To each cell u is assigned a hook , which is composed of the cell u itself
as well as all cells to the right of u and below u. The hook length of u is the
number of cells the hook consists of. A partition λ is said to be t-core if λ has
no cell of hook length equal to t. An explanation of this terminology is given,
for instance, in [AHJ14]. More generally, λ is said to be (t1, t2, . . . , tr)-core if λ
is t-core for t = t1, t2, . . . , tr.
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The motivation to count partitions that are t-core for different values of t
has been sparked by the following elegant result due to Anderson [And02].

Theorem 1.1. The number of (s, t)-core partitions is finite if and only if s and
t are coprime. In that case, this number is

1

s+ t

(
s+ t

s

)
.

In particular, the number of (s, s+ 1)-core partitions is the Catalan number

Cs =
1

s+ 1

(
2s

s

)
=

1

2s+ 1

(
2s+ 1

s

)
,

which also counts the number of Dyck paths of order s. Generalizations to
(s, s + 1, . . . , s + p)-core partitions, including a relation to generalized Dyck
paths, are given in [AL15].

In a different direction, Ford, Mai and Sze [FMS09] show that the number
of self-conjugate (s, t)-core partitions is(

bs/2c+ bt/2c
bs/2c

)
,

provided that s and t are coprime. More generally, Amdeberhan [Amd15] raises
the interesting problem of counting the number of special partitions which are
t-core for certain values of t. In particular, he conjectures the following count.

Conjecture 1.2. The number of (s, s + 1)-core partitions into distinct parts
equals the Fibonacci number Fs+1.

It is further conjectured in [Amd15] that the largest possible size of an
(s, s + 1)-core partition into distinct parts is bs(s + 1)/6c, and that there is
a unique such largest partition unless s ≡ 1 modulo 3, in which case there are
two partitions of maximum size. Amdeberhan also provides a conjecture for
the average size of these partitions. We do not pursue these more intricate, but
very interesting, questions here (the interested reader is referred to, for instance,
[OS07], [AHJ14], [SZ15], [CHW16], [Joh15], and the references therein, for the
case of general core partitions, and [Xio15] for the case of (s, s+ 1)-core parti-
tions into distinct parts). Instead, we focus on the most basic question on core
partitions into distinct parts, namely to enumerate them. Ultimately, our main
result is the following enumeration of (s, t)-core partitions into distinct parts for
a two-parameter family of values (s, t).

Theorem 1.3. Let d, s ≥ 1. The number Nd(s) of (s, ds − 1)-core partitions
into distinct parts is characterized by Nd(1) = 1, Nd(2) = d and, for s ≥ 3,

Nd(s) = Nd(s− 1) + dNd(s− 2).
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In particular, the case d = 1 clearly settles Conjecture 1.2. This special
case has since been also independently proved by Xiong [Xio15]. Before giving
a proof of Theorem 1.3 in Section 4, we discuss an elementary bijective proof of
the special case d = 1 in Sections 2 and 3.

We do so, because a natural extension of our approach leads to a simple but
curious analog of Euler’s theorem on partitions into distinct (respectively odd)
parts, which appears to be missing from the literature on partitions. Namely,
we obtain a bijection between partitions into distinct parts on the one hand and
partitions into odd parts on the other hand, which preserves the perimeter of
the partitions. Here, following Corteel and Lovejoy [CL04, Section 4.2] (up to a
shift by 1), we refer to the perimeter of a partition as the maximum part plus
the number of parts minus 1 (equivalently, the perimeter of λ is the maximum
hook length in λ).

Theorem 1.4. The number of partitions into distinct parts with perimeter M
is equal to the number of partitions into odd parts with perimeter M . Both are
enumerated by the Fibonacci number FM .

Example 1.5. The partitions into distinct parts with perimeter 5 are (5), (4, 1),
(4, 2), (4, 3) and (3, 2, 1). The partitions into odd parts with perimeter 5 are
(5), (3, 3, 3), (3, 3, 1), (3, 1, 1) and (1, 1, 1, 1, 1). In each case, there are F5 = 5
many of these partitions.

While it appears natural, we have been unable to find the result in Theo-
rem 1.4 in the existing literature. On the other hand, an intriguingly similar
result of Euler is widely known: the number D(n) of partitions of n into dis-
tinct parts equals the number O(n) of partitions of n into odd parts. In other
words, there is a bijection between partitions into distinct and odd parts, which
preserves the size of the partitions. While there are bijective proofs (see, for
instance, [AE04, Chapter 2.3]), Euler famously proved his claim using a very el-
egant manipulation of generating functions (see, for instance, [And76, Cor. 1.2]
or [AE04, Chapter 5.2]). Namely, he observed that∑

n≥0

D(n)xn = (1 + x)(1 + x2)(1 + x3) · · ·

=
1− x2

1− x
1− x4

1− x2
1− x6

1− x3
· · ·

=
1

1− x
1

1− x3
1

1− x5
· · · =

∑
n≥0

O(n)xn.

Several refinements of Euler’s theorem due to Sylvester, Fine and Bousquet-
Mélou–Eriksson are beautifully presented, for instance, in the book [AE04,
Chapter 9] by Andrews and Eriksson.

Example 1.6. Bousquet-Mélou and Eriksson [BME97a], [BME97b] show that
the number of lecture hall partitions of n with length k (these are special parti-
tions of n into distinct parts) is equal to the number of partitions of n into odd
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parts with each part at most 2k− 1. Among other refinements, they also prove
that the number of partitions of n into distinct parts with sign-alternating sum
k is equal to the number of partitions of n into k odd parts. A corresponding
combinatorial bijection is given in [KY99].

Example 1.7. Another refinement, found in [Fin88, (23.91)], shows that the
number of partitions of n into distinct parts with maximum part M is equal to
the number of partitions of n into odd parts such that the maximum part plus
twice the number of parts is 2M + 1.

Example 1.8. The rank of a partition is the difference between the largest
part and the number of parts. Note that the rank of a partition into distinct
parts is always nonnegative. Then, we have [Fin88, (24.6)] that the number of
partitions of n into odd parts with maximum part equal to 2M + 1 is equal to
the number of partitions of n into distinct parts with rank 2M or 2M + 1.

A natural question is whether similarly interesting refinements exist for
Theorem 1.4, that is, for partitions into distinct (respectively odd) parts with
perimeter M .

2 Partitions with bounded hook lengths

We begin by proving the case d = 1 of Theorem 1.3, thus establishing Conjec-
ture 1.2. The proof for the general case is then given in Section 4. Let Fs denote
the Fibonacci numbers with F0 = 0 and F1 = 1.

Theorem 2.1. There are Fs+1 many (s, s + 1)-core partitions into distinct
parts.

In preparation for Theorem 2.1, we first prove the following claim.

Lemma 2.2. A partition into distinct parts is (s, s + 1)-core if and only if it
has perimeter strictly less than s.

Proof. Recall that the perimeter of a partition λ is the maximum hook length
in λ. We therefore need to show that, if λ is (s, s + 1)-core, then λ is (s, s +
1, s + 2, . . .)-core. Suppose otherwise, and let t be the smallest hook length in
λ larger than s. By construction, λ is (t − 1, t − 2)-core. Consider the Young
diagram of λ, and focus on a cell u with hook length t. A moment of reflection
reveals that, since λ has distinct parts, the cell to the right of u has hook length
t− 1 or t− 2. This contradicts the fact that λ is (t− 1, t− 2)-core, and so our
claim must be true.

Proof of Theorem 2.1. By virtue of Lemma 2.2, we need to show that there are
Fs+1 many partitions into distinct parts with perimeter strictly less than s. One
checks directly that this is true for s = 1 (in which case, F2 = 1 and the relevant
set of partitions consists of the empty partition only) and s = 2 (in which case,
F3 = 2 and the relevant set of partitions consists of the partition (1) and the
empty partition).
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Let s ≥ 3 and, for the purpose of induction, suppose that the number of
partitions into distinct parts with perimeter less than r is given by Fr+1 for all
r < s. Let λ = (λ1, λ2, . . .) be a partition into distinct parts with perimeter less
than s. Then exactly one of the following two cases applies:

(a) The largest part λ1 satisfies λ1 > λ2 + 1. Then, consider the partition
λ′ = (λ1 − 1, λ2, λ3, . . .). By the assumption on λ1, the partition λ′ still
has distinct parts. On the other hand, the perimeter of λ′ is one less than
the perimeter of λ. In fact, λ′ can be any of the Fs many partitions into
distinct parts with perimeter less than s− 1.

(b) The largest part λ1 satisfies λ1 = λ2 + 1. In that case, consider the
partition λ′ = (λ2, λ3, . . .), which has distinct parts. Clearly, the perimeter
of λ′ is two less than the perimeter of λ. Again, λ′ can be any of the Fs−1
many partitions into distinct parts with perimeter less than s− 2.

Taken together, we find that the number of partitions into distinct parts with
perimeter less than s is given by Fs + Fs−1 = Fs+1, as claimed.

Now, we establish Theorem 1.4 via a natural variation of our proof of The-
orem 2.1. Recall that the perimeter of a partition is the maximum hook length
in the partition. In the spirit of Euler’s result, Theorem 1.4 claims that, for
M ≥ 1, the number of partitions into distinct parts with perimeter M is equal
to the number of partitions into odd parts with perimeter M , and that this
common number is FM .

Proof of Theorem 1.4. By Lemma 2.2, a partition into distinct parts is (s, s+1)-
core if and only if it has perimeter at most s − 1. Hence, Theorem 2.1 can be
rephrased as saying that there are FM+2 many partitions into distinct parts
with perimeter at most M . Consequently, there are FM = FM+2−FM+1 many
partitions into distinct parts with perimeter exactly M . This verifies the first
part of Theorem 1.4.

It remains to prove that there are also FM partitions into odd parts with
perimeter M . We proceed using a variation of our proof of Theorem 2.1. Again,
it is straightforward to verify the claim for M = 1 and M = 2. For the purpose
of induction suppose that, for all m < M , there are Fm many partitions into
odd parts with perimeter m. Let λ = (λ1, λ2, . . .) be a partition into odd parts
with perimeter M . Then exactly one of the following two cases applies:

(a) The largest part λ1 satisfies λ1 > λ2 + 1. Then, consider the partition
λ′ = (λ1 − 2, λ2, λ3, . . .). Clearly, the parts of λ′ are all odd, and the
perimeter of λ′ is M − 2. Evidently, λ′ can be any of the FM−2 many
partitions into odd parts with perimeter M − 2.

(b) The largest part λ1 satisfies λ1 = λ2. In that case, consider the partition
λ′ = (λ2, λ3, . . .). Clearly, the parts of λ′ are all odd, and the perimeter of
λ′ is M − 1. Again, λ′ can be any of the FM−1 many partitions into odd
parts with perimeter M − 1.
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Taken together, we find that the number of partitions into odd parts with
perimeter M is given by FM−2 + FM−1 = FM .

3 An explicit bijection

Partition theorists are often interested in bijective proofs of statements of equinu-
merosity. In the present discussion, a combination and comparison of the re-
cursive proofs of Theorems 1.4 and 2.1 does yield an explicit bijection between
partitions into distinct parts with perimeter M and partitions into odd parts
with perimeter M .

Let C be the set of all compositions with parts 1 and 2, and such that
the last part is not a 2. For instance, C contains the following compositions
µ = (µ1, µ2, . . .) of |µ| = µ1 + µ2 + . . . = n, for n = 0, 1, . . . 5.

compositions µ in C |µ| #
() 0 1
(1) 1 1
(1, 1) 2 1
(1, 1, 1), (2, 1) 3 2
(1, 1, 1, 1), (1, 2, 1), (2, 1, 1) 4 3

Table 1: Small compositions µ ∈ C ranked by |µ|

It is straightforward to enumerate compositions of M in C.

Lemma 3.1. For M ≥ 1, there are FM many compositions µ ∈ C with |µ| = M .

For instance, a well-known equivalent version of this count appears as an
exercise in [Sta97, Chapter 1, Exercise 14(c)], where the reader is asked to show
that the number of compositions µ of M into parts 1 and 2 is FM+1.

Next, we introduce bijections between C and the sets of partitions into dis-
tinct (respectively, odd) parts. Combining these two bijections, we then obtain
a bijection, preserving perimeters, between partitions into distinct parts and
partitions into odd parts. In particular, this fact implies Theorems 1.4 and 2.1.

Theorem 3.2. The map µ 7→ λd(µ), described below, is a bijection between C
and the set of partitions into distinct parts. Likewise, the map µ 7→ λo(µ) is
a bijection between C and the set of partitions into odd parts. Moreover, the
perimeter of the partitions λd(µ) and λo(µ) is |µ|.

Proof. Let µ ∈ C. We assign a partition λd = λd(µ) to µ by the following
recursive recipe. If µ = () or µ = (1), then λd = µ. Otherwise, write µ = (µ1, µ

′)
with µ1 ∈ {1, 2} and µ′ ∈ C. Suppose that λ′ = (λ1, λ2, λ3, . . .) is the partition
assigned to µ′.

(a) If µ1 = 1, then λd = (λ1 + 1, λ2, λ3, . . .).
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(b) If µ1 = 2, then λd = (λ1 + 1, λ1, λ2, λ3, . . .).

By construction, the partition λd has distinct parts. In fact, it is straightforward
to verify (in the spirit of the proof of Theorem 2.1) that the map µ 7→ λd(µ)
describes a bijection between C and the set of partitions into distinct parts.

Analogously, we assign a partition λo = λo(µ) to µ ∈ C as follows. Again, if
µ = () or µ = (1), then λo = µ. Otherwise, write µ = (µ1, µ

′) with µ1 ∈ {1, 2}
and µ′ ∈ C. Suppose that λ′ = (λ1, λ2, λ3, . . .) is the partition assigned to µ′.

(a) If µ1 = 1, then λo = (λ1, λ1, λ2, λ3, . . .).

(b) If µ1 = 2, then λo = (λ1 + 2, λ2, λ3, . . .).

Then, the map µ 7→ λo(µ) describes a bijection between C and the set of parti-
tions into odd parts.

Combining these two bijections, we have a bijection between partitions λd
into distinct parts and partitions λo into odd parts.

λd = λd(µ) ↔ µ ↔ λo(µ) = λo

It also follows from the respective constructions that the partitions λd(µ) and
λo(µ) both have perimeter |µ|.

Example 3.3. The following table lists all 13 partitions into distinct (respec-
tively, odd) parts with perimeter at most 5, together with the composition µ in
C they get matched with.

µ λd λo
() () ()
(1) (1) (1)
(1, 1) (2) (1, 1)
(1, 1, 1) (3) (1, 1, 1)
(2, 1) (2, 1) (3)
(1, 1, 1, 1) (4) (1, 1, 1, 1)
(1, 2, 1) (3, 1) (3, 3)
(2, 1, 1) (3, 2) (3, 1)
(1, 1, 1, 1, 1) (5) (1, 1, 1, 1, 1)
(1, 1, 2, 1) (4, 1) (3, 3, 3)
(1, 2, 1, 1) (4, 2) (3, 3, 1)
(2, 1, 1, 1) (4, 3) (3, 1, 1)
(2, 2, 1) (3, 2, 1) (5)

In particular, note that the composition µ = (1, 2, 1) corresponds to the parti-
tions

λd(µ) = (3, 1),

λo(µ) = (3, 3).
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This illustrates that, while the present bijection between partitions into distinct
parts and partitions into odd parts preserves the perimeter, it does not preserve
the size of the partitions. Therefore, our bijection is of a rather different nature
compared to the bijections underlying Euler’s theorem and its generalizations.

4 A generalization

Recall that we showed in Theorem 2.1 that, as conjectured by Amdeberhan
[Amd15], (s − 1, s)-core partitions into distinct parts are counted by the Fi-
bonacci numbers Fs. In this section, we generalize this result and enumerate
(s, ds − 1)-core partitions into distinct parts for any d ≥ 1. That is, we prove
Theorem 1.3 from the introduction, which is restated here for the reader’s con-
venience.

Theorem 4.1. The number Nd(s) of (s, ds − 1)-core partitions into distinct
parts is characterized by Nd(1) = 1, Nd(2) = d and, for s ≥ 3,

Nd(s) = Nd(s− 1) + dNd(s− 2). (1)

We are confident that a suitable generalization of our proof of Theorem 2.1
can be used to prove this result. Since the details appear to be somewhat more
technical, we instead offer an alternative proof, inspired by the approach taken
in [Xio15].

Example 4.2. Versions of the numbers Nd(s) in Theorem 4.1 have been studied
in the literature since Lucas, and are usually referred to as generalized Fibonacci
numbers or generalized Fibonacci polynomials (in the variable d). For further
information and references, we refer the interested reader to the recent paper
[ACMS14]. The first few polynomials Nd(s), for s = 1, 2, . . . , 7, are

1, d, 2d, d(d+ 2), d(3d+ 2), d(d2 + 5d+ 2), d(4d2 + 7d+ 2).

Of course, we recover the usual Fibonacci numbers upon setting d = 1.

In preparation for the proof of Theorem 4.1, we say that a set X ⊆ Z is
twin-free if there is no x ∈ X such that {x, x+ 1} ⊆ X. As the following result
shows, the number of tuples of nested twin-free sets satisfies the same recursive
relation that is claimed for the core partitions in Theorem 4.1. Note, however,
that the initial conditions differ.

Lemma 4.3. Let Md(s) denote the number of tuples (X1, X2, . . . , Xd) of twin-
free sets such that Xd ⊆ Xd−1 ⊆ . . . ⊆ X1 ⊆ {1, 2, . . . , s−1}. Then, Md(1) = 1,
Md(2) = d+ 1 and, for s ≥ 3,

Md(s) = Md(s− 1) + dMd(s− 2). (2)

Proof. Clearly, Md(1) = 1 because in that case the only tuple (X1, X2, . . . , Xd)
is the one with X1 = X2 = . . . = Xd = {}. On the other hand, Md(2) = d + 1
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because then all tuples (X1, X2, . . . , Xd) are of the form Xj = {1}, if j ≤ J ,
and Xj = {}, if j > J , for some J ∈ {0, 1, . . . , d}.

We may therefore suppose that s ≥ 2. Let (X1, X2, . . . , Xd) be a tuple of
twin-free sets such that Xd ⊆ Xd−1 ⊆ . . . ⊆ X1 ⊆ {1, 2, . . . , s − 1}. Then,
exactly one of the following two possibilities is true:

(a) None of the sets X1, X2, . . . , Xd contains s− 1.

(b) There is an index J ∈ {1, 2, . . . , d} such that s− 1 ∈ Xj for all j ≤ J and
s− 1 6∈ Xj for all j > J .

In case (a), our tuple (X1, X2, . . . , Xd) is one of the Md(s − 1) many tuples of
twin-free sets such that Xd ⊆ Xd−1 ⊆ . . . ⊆ X1 ⊆ {1, 2, . . . , s− 2}.

On the other hand, suppose case (b) holds with J ∈ {1, 2, . . . , d}. In that
case, s − 1 ∈ X1. Since X1 is twin-free it follows that s − 2 6∈ X1, and hence
s − 2 is not contained in any of the sets X1, X2, . . . , Xd. Let X ′1, X

′
2, . . . , X

′
d

be the sets obtained from X1, X2, . . . , Xd by removing s − 1 from these sets.
That is, X ′j = Xj − {s − 1}. Observe that the tuple (X ′1, X

′
2, . . . , X

′
d) can be

any of the Md(s − 2) many tuples of twin-free sets such that X ′d ⊆ X ′d−1 ⊆
. . . ⊆ X ′1 ⊆ {1, 2, . . . , s− 3}. Since (X ′1, X

′
2, . . . , X

′
d) together with the value of

J determines (X1, X2, . . . , Xd), we conclude that case (b) accounts for exactly
dMd(s− 2) many tuples.

The recursive relation (2) follows upon combining these two cases.

Lemma 4.4. (s, ds−1)-core partitions into distinct parts are in bijective corre-
spondence with tuples (X1, X2, . . . , Xd) of twin-free sets such that Xd ⊆ Xd−1 ⊆
. . . ⊆ X1 ⊆ {1, 2, . . . , s− 1} and s− 1 6∈ Xd.

Proof. Following [Xio15], given a partition λ, we denote with β(λ) the set of
hook lengths h(u) where u is a cell in the first column of λ. Clearly, the set β(λ)
uniquely determines λ. Moreover, λ is t-core if and only if, for any x ∈ β(λ)
with x ≥ t, we always have x−t ∈ β(λ) [Xio15, Lemma 2.1]. In particular, if λ is
t-core, then λ is also nt-core for any n ≥ 1. This implies that an (s, ds− 1)-core
partition into distinct parts is also (ds − 1, ds)-core and hence, by Lemma 2.2,
has perimeter (maximum hook length) at most ds− 2.

Let λ be an (s, ds − 1)-core partition into distinct parts. Equivalently, λ is
an s-core partition into distinct parts with perimeter at most ds−2. Therefore,
the set β(λ) can be any twin-free set

β(λ) = β1(λ) ∪ β2(λ) ∪ . . . ∪ βd−1(λ) ∪ βd(λ)

where
βj(λ) ⊆ {(j − 1)s+ 1, (j − 1)s+ 2, . . . , js− 1},

for j ∈ {1, 2, . . . , d− 1}, and

βd(λ) ⊆ {(d− 1)s+ 1, (d− 1)s+ 2, . . . , ds− 2}.
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Attach to λ the tuple (X1, X2, . . . , Xd) with

Xj = {x− (j − 1)s : x ∈ βj(λ)} .

By construction, Xj ⊆ {1, 2, . . . , s− 1}. Since λ has distinct parts, the sets Xj

are all twin-free. Recall that the condition that λ is s-core is equivalent to the
following: if x ∈ βj(λ) with j > 1, then x − s ∈ βj−1(λ). This translates into
Xd ⊆ Xd−1 ⊆ . . . ⊆ X1. Finally, s − 1 6∈ Xd because ds − 1 6∈ β(λ). Since
there are no further restrictions on the sets Xj , we have arrived at the bijective
correspondence, as promised.

Now, we are in a comfortable position to prove Theorem 4.1.

Proof of Theorem 4.1. In light of the bijective correspondence established in
Lemma 4.4, Nd(s) equals the number of tuples (X1, X2, . . . , Xd) of twin-free
sets such that Xd ⊆ Xd−1 ⊆ . . . ⊆ X1 ⊆ {1, 2, . . . , s − 1} and s − 1 6∈ Xd. We
need to show that Nd(1) = 1, Nd(2) = d and Nd(s) = Nd(s− 1) + dNd(s− 2).
This is clearly a variation of Lemma 4.3 and, indeed, we can prove it along the
same lines.

As in the proof of Lemma 4.3, we see that Nd(1) = 1, Nd(2) = d, the only
difference being that in the latter case one tuple is excluded due to the condition
s− 1 6∈ Xd. Therefore, consider the case s ≥ 2. Let (X1, X2, . . . , Xd) be a tuple
of twin-free sets such that Xd ⊆ Xd−1 ⊆ . . . ⊆ X1 ⊆ {1, 2, . . . , s − 1} and
s− 1 6∈ Xd. Then, exactly one of the following two possibilities is true:

(a) None of the sets X1, X2, . . . , Xd contains s− 1.

(b) There is an index J ∈ {1, 2, . . . , d− 1} such that s− 1 ∈ Xj for all j ≤ J
and s− 1 6∈ Xj for all j > J .

In case (a), our tuple (X1, X2, . . . , Xd) is one of the Md(s−1) many tuples from
Lemma 4.3 of twin-free sets such that Xd ⊆ Xd−1 ⊆ . . . ⊆ X1 ⊆ {1, 2, . . . , s−2}.

On the other hand, suppose case (b) holds with J ∈ {1, 2, . . . , d − 1}. As
in the proof of Lemma 4.3, let X ′j = Xj − {s − 1}. Again, the resulting tuple
(X ′1, X

′
2, . . . , X

′
d) can be any of the Md(s − 2) many tuples of twin-free sets

such that X ′d ⊆ X ′d−1 ⊆ . . . ⊆ X ′1 ⊆ {1, 2, . . . , s − 3}. Since (X ′1, X
′
2, . . . , X

′
d)

together with the value of J determines (X1, X2, . . . , Xd), we conclude that case
(b) accounts for exactly (d− 1)Md(s− 2) many tuples.

Combining these two cases, we arrive at

Nd(s) = Md(s− 1) + (d− 1)Md(s− 2). (3)

The asserted recurrence relation (1) for Nd(s) therefore follows from the recur-
rence relation (2) for Md(s). Indeed, for all s ≥ 5,

Nd(s) = [Md(s− 2) + dMd(s− 3)] + (d− 1)[Md(s− 3) + dMd(s− 4)]

= [Md(s− 2) + (d− 1)Md(s− 3)] + d[Md(s− 3) + (d− 1)Md(s− 4)]

= Nd(s− 1) + dNd(s− 2).

10



It only remains to verify initial values. By (3), we have Nd(3) = Md(2) +
(d − 1)Md(1) = 2d and Nd(4) = Md(3) + (d − 1)Md(2) = dMd(2) + dMd(1) =
d2 + 2d. These values indeed also satisfy the recursive relation (1) for Nd(s),
since Nd(2) + dNd(1) = 2d and Nd(3) + dNd(2) = d2 + 2d.

5 Conclusion

We proved an analog for partitions into distinct parts of Anderson’s Theorem 1.1
specialized to (s, s + 1)-core partitions. More generally, in Theorem 1.3, we
enumerated (s, ds−1)-core partitions into distinct parts. It would be interesting
to further generalize this result and determine a count for (s, t)-core partitions
into distinct parts, for any coprime s and t. In this direction, we offer the
following conjecture for further motivation.

Conjecture 5.1. If s is odd, then the number of (s, s+ 2)-core partitions into
distinct parts equals 2s−1.

This claim is based on experimental evidence and has been verified for s < 20
after listing all relevant partitions.

Example 5.2. For s = 3, the four (3, 5)-core partitions into distinct parts are

{}, {1}, {2}, {3, 1}.

For s = 5, the sixteen (5, 7)-core partitions into distinct parts are

{}, {1}, {2}, {3}, {4}, {2, 1}, {3, 1}, {5, 1}, {3, 2}, {4, 2, 1},
{6, 2, 1}, {4, 3, 1}, {7, 3, 2}, {5, 4, 2, 1}, {8, 4, 3, 1}, {9, 5, 4, 2, 1}.

Note that the largest occurring size among these partitions is 3 + 1 = 4, for
s = 3, and 9 + 5 + 4 + 2 + 1 = 21, for s = 5. For s = 3, 5, . . . , 17, the largest
possible sizes of (s, s+ 2)-core partitions into distinct parts are

4, 21, 65, 155, 315, 574, 966, 1530.

Based on the initial data, it appears that there is a unique partition of this
largest size, and that the largest possible size of an (s, s+ 2)-core partition into
distinct parts is 1

384 (s2−1)(s+3)(5s+17). This partition of largest size appears
to have both the highest number of parts (namely, 1

8 (s − 1)(s + 5) many) and
the largest part (namely, a part of size 3

8 (s2−1)). After {3, 1} and {9, 5, 4, 2, 1},
the next such unique largest partitions are

{18, 12, 11, 7, 6, 5, 3, 2, 1}, {30, 22, 21, 15, 14, 13, 9, 8, 7, 6, 4, 3, 2, 1}.

We hope that Conjecture 5.1 together with the results in this paper pro-
vide clues for enumerating (s, t)-core partitions into distinct parts. Table 2 lists
the number of such partitions for s, t ≤ 12. Observe, in particular, the occur-
rence of the Fibonacci numbers next to the main diagonal, in accordance with
Theorem 2.1.
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s\t 1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 ∞ 2 ∞ 3 ∞ 4 ∞ 5 ∞ 6 ∞
3 1 2 ∞ 3 4 ∞ 5 6 ∞ 7 8 ∞
4 1 ∞ 3 ∞ 5 ∞ 8 ∞ 11 ∞ 15 ∞
5 1 3 4 5 ∞ 8 16 18 16 ∞ 21 38
6 1 ∞ ∞ ∞ 8 ∞ 13 ∞ ∞ ∞ 32 ∞
7 1 4 5 8 16 13 ∞ 21 64 50 64 114
8 1 ∞ 6 ∞ 18 ∞ 21 ∞ 34 ∞ 101 ∞
9 1 5 ∞ 11 16 ∞ 64 34 ∞ 55 256 ∞
10 1 ∞ 7 ∞ ∞ ∞ 50 ∞ 55 ∞ 89 ∞
11 1 6 8 15 21 32 64 101 256 89 ∞ 144
12 1 ∞ ∞ ∞ 38 ∞ 114 ∞ ∞ ∞ 144 ∞

Table 2: The number of (s, t)-core partitions into distinct parts for s, t ≤ 12

It would further be interesting, but appears to be harder, to enumerate
(s, t)-core partitions into odd parts.
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