
On congruence schemes for constant terms and their

applications

Armin Straub*

Department of Mathematics and Statistics
University of South Alabama

May 19, 2022

Abstract

Rowland and Zeilberger devised an approach to algorithmically determine the modulo pr

reductions of values of combinatorial sequences representable as constant terms (building on
work of Rowland and Yassawi). The resulting p-schemes are systems of recurrences and, de-
pending on their shape, are classified as automatic or linear. We revisit this approach, provide
some additional details such as bounding the number of states, and suggest a third natural
type of scheme that combines benefits of automatic and linear ones. We illustrate the utility
of these “scaling” schemes by confirming and extending a conjecture of Rowland and Yassawi
on Motzkin numbers.

1 Preliminaries

1.1 Introduction

Throughout, let p be a prime and denote with Zp the p-adic integers. If A(n) is a sequence of
p-adic integers with the property that its ordinary generating function

∑
n≥0A(n)xn is algebraic

over Zp(x), then, for any integer r ≥ 1, the reductions A(n) modulo pr are p-automatic (that is,
there exists a finite state automaton which computes the values A(n) modulo pr from the base p
digits of n; see Section 1.2 for a simple example, and [2] for an introduction to automatic sequences
in general). A multivariate generalization of this result was proved by Christol, Kamae, Mendes
France and Rauzy [8] in the case r = 1, while the extension to r ≥ 1 is due to Denef and Lipshitz [9].
Based on the proof in [9], Rowland and Yassawi [19] provided a constructive proof of the following
result.

Theorem 1.1 ([19, Theorem 2.1]). Suppose that A(n) is a sequence of p-adic integers that can be
represented as the diagonal of a multivariate rational function in Zp(x1, x2, . . . , xd). Then, for any
integer r ≥ 1, the reductions A(n) modulo pr are p-automatic.

*Email: straub@southalabama.edu

1

Here, the diagonal of a rational function in Zp(x1, x2, . . . , xd) with power series∑
n1,n2,...,nd≥0

c(n1, n2, . . . , nd)x
n1
1 · · ·x

nd

d

is the (univariate) sequence c(n, n, . . . , n). Bostan, Lairez and Salvy [5] recently showed that the
diagonals of rational functions in Z(x1, x2, . . . , xd) are precisely those sequences expressible as mul-
tiple binomial sums. A conjecture of Christol [7] suggests that every integer sequence, which grows
at most exponentially and which satisfies a linear recursion with polynomial coefficients, is of this
form. This illustrates that Theorem 1.1 applies to a large class of the sequences naturally arising
in combinatorics.

Under the assumptions of Theorem 1.1, Rowland and Yassawi [19] described practical algorithms
to compute a finite state automaton that encodes the values A(n) modulo pr and applied these to
a wide variety of combinatorial sequences, obtaining a host of fascinating and inspiring conjectures
as well as elegantly reproving known results. Subsequently, Rowland and Zeilberger [20] provided
a similar algorithm, as well as a clever and useful new variation, for the case of sequences A(n)
expressible as constant terms, meaning that

A(n) = ct[P (x)nQ(x)], (1)

where P,Q ∈ Z[x±1] are Laurent polynomials in x = (x1, . . . , xd). We revisit this approach in
Section 2 and provide some additional details such as bounding the number of states in Theorem 2.4,
resulting in bounds that are similar to those obtained by Rowland and Yassawi [19] for the case of
diagonals of rational functions.

The two algorithms of Rowland and Zeilberger result in systems of recurrences, called (congru-
ence) p-schemes, which depending on their shape are classified as linear or automatic (where an
automatic p-scheme is a linear p-scheme that is equivalent to a finite state automaton). We add a
third special type of p-scheme which we call scaling and which naturally lies between the two. For
certain purposes, these scaling schemes combine benefits of automatic schemes and linear schemes:
scaling schemes are (nearly) as easily analyzable as automatic ones, while their number of states
and computational cost are often drastically reduced, much like for linear schemes.

If a sequence of constant terms A(n) has p-adic valuation bounded by r, then the sequence of
p-adic valuations of A(n) is p-automatic as well, and a p-scheme for the valuations can be easily
extracted from an automatic p-scheme for the values of A(n) modulo pr. We discuss this observation
in Section 3 and reprove in Theorem 3.1 a result classifying the 2-adic valuation of Motzkin numbers
that was conjectured by Amdeberhan, Deutsch and Sagan [10, Conjecture 5.5] and proven by Eu,
Liu and Yeh [11]. We further observe that scaling p-schemes are particularly well suited for the
purpose of studying p-adic valuations. As an application, we consider an open question of Rowland
and Yassawi [19] that asks whether there exist infinitely many primes p such that p2 never divides
any Motzkin number M(n). By computing congruence automata, Rowland and Yassawi showed
that p = 5 and p = 13 are two such primes, and they conjectured that 31, 37, 61 are such primes as
well. We prove in Theorem 3.3 that their conjecture is true and extend it to all primes below 200,
resulting in three additional primes with that property.

In order to perform the computations required for Theorem 3.3, we implemented the algorithm
described in Section 2 in the open-source computer algebra system Sage [21]. This implementation
is introduced in Section 4, followed by several examples and applications which reproduce and
extend interesting computations and conjectures from [19] and [20].

2

Finally, in Section 5, we conclude with further motivation for seeking means to efficiently com-
pute congruence schemes. In particular, we indicate open problems which show that, even in
the case of the very well-studied Catalan numbers, intriguing new questions reveal themselves by
studying congruence schemes.

1.2 Introductory examples

The Catalan numbers

C(n) =
1

n+ 1

(
2n

n

)
=

(
2n

n

)
−
(

2n

n− 1

)
(2)

play a fundamental role [22] in combinatorics and have numerous combinatorial interpretations.
It follows immediately from the latter representation in (2) that the Catalan numbers have the
constant term expression

C(n) = ct[(x−1 + 2 + x)n(1− x)]. (3)

Based on this constant term expression (or an equivalent representation as the diagonal of a rational
function), the algorithms of Rowland and Yassawi [19] and of Rowland and Zeilberger [20] can be
used to construct finite state automata that describe the Catalan numbers modulo any fixed prime
power.

Example 1.2. Figure 1, which is taken from [14], shows such a finite state automaton for the
Catalan numbers C(n) modulo 3. For instance, since 35 has the representation 1022 in base 3,
to compute C(35) modulo 3, we begin at the marked initial node and follow the arrows labeled
2, 2, 0 and 1 corresponding to the digits of 35 in base 3. After these four transitions, we are
at the top-right node whose label 1 tells us that C(35) ≡ 1 modulo 3 (without computing that
C(35) = 3,116,285,494,907,301,262). We note that a more transparent characterization can be
obtained for Catalan numbers modulo any prime p through generalized Lucas congruences [15].

1start

0

1

22

0, 1

2

0, 1, 2

0

2

1

2

0

1

1

2

0

Figure 1: Congruence automaton for Catalan numbers modulo 3

3

Similar to the representation (3) for the Catalan numbers, the well-known sequence of Motzkin
numbers M(n) has the constant term representation

M(n) = ct[(x−1 + 1 + x)n(1− x2)], (4)

which we will employ in the sequel as well.
As indicated in [20], any binomial coefficient sum of a certain kind can be transformed into a

constant term representation. Famous instances of such sequences include the two Apéry sequences

B(n) =

n∑
k=0

(
n

k

)2(
n+ k

k

)
= ct

[
(x+ 1)(x+ y)(x+ y + 1)

xy

]n
,

A(n) =

n∑
k=0

(
n

k

)2(
n+ k

k

)2

= ct

[
(x+ y)(z + 1)(x+ y + z)(y + z + 1)

xyz

]n
, (5)

which are the fundamental ingredients in Apéry’s proofs [3], [17] of the irrationality of ζ(2) and
ζ(3), respectively.

As a final example, we note that Gorodetsky [13] recently obtained particularly nice constant
term representations for all Apéry-like sporadic sequences, allowing him to uniformly derive certain
congruential properties.

1.3 Notation

In the sequel, we will use the vector notation x = (x1, . . . , xd) and write, for instance, Q[x±1] =
Q[x±11 , . . . , x±1d] for the ring of Laurent polynomials in d variables with rational coefficients. We

denote monomials as xk = xk11 · · ·x
kd
d , where k = (k1, . . . , kd) is the exponent vector.

We denote with Λp the Cartier operator

Λp

∑
k∈Zd

akx
k

 =
∑
k∈Zd

apkx
k.

Observe that, if A(n) = ct[P (x)nQ(x)], where P,Q ∈ Z[x±1] are Laurent polynomials in x =
(x1, . . . , xd), then

A(pn+ k) = ct[P (x)pn+kQ(x)]

≡ ct[P (xp)nP (x)kQ(x)] (mod p)

= ct[P (x)nΛp[P (x)kQ(x)]], (6)

where we used that P (x)pn ≡ P (xp)n modulo p (see congruence (9) for a generalization modulo
pr). For the final equality note that ct[f(xp)g(x)] = ct[f(x)Λp[g(x)]] for any f, g ∈ Z[x±1] because
a term akx

k of g(x) can contribute to the constant term only if (each component of) the exponent
k = (k1, . . . , kd) is divisible by p (since the latter is true for each term of f(xp)).

2 Congruence schemes

2.1 Linear and automatic congruence schemes

Let A : Z≥0 → R be a sequence with values in a ring R. Following [20], we say that a linear
p-scheme for A(n) consists of sequences A0, A1, . . . , Am : Z≥0 → R with A0 = A such that, for all

4

i ∈ {0, 1, . . . ,m}, k ∈ {0, 1, . . . , p− 1} and n ≥ 0,

Ai(pn+ k) =

m∑
j=0

α
(k)
i,j Aj(n) (7)

for some α
(k)
i,j ∈ R. Note that the linear p-scheme, including the values of all involved sequences,

is determined by the transition coefficients α
(k)
i,j together with the initial conditions ci = Ai(0). In

the sequel, we refer to the Ai as the states of the p-scheme. In particular, m+ 1 is the number of
states of the p-scheme.

We note that A(n) can be described by a linear p-scheme if and only if A(n) is p-regular [1].
In the case where R is finite (in this paper, we only consider the case where R = Z/prZ for some
r ≥ 1), these sequences are precisely the p-automatic ones.

Example 2.1. There exists a linear 3-scheme for the Catalan numbers C(n) modulo 3 with two
states A0, A1 : N→ Z/3Z and the following transitions:

A0(3n) = A0(n) +A1(n)
A0(3n+ 1) = A0(n) +A1(n)
A0(3n+ 2) = 2A0(n) +A1(n)

A1(3n) = 0
A1(3n+ 1) = A0(n) +A1(n)
A1(3n+ 2) = A0(n) + 2A1(n)

Together with the initial conditions

A0(0) = 1, A1(0) = 0,

the above transitions uniquely describe all the values taken by the sequences A0, A1 and, therefore,
the Catalan numbers C(n) modulo 3. For instance, to determine C(35) modulo 3, as in Example 1.2,
we compute

A0(35) = 2A0(11) +A1(11) = 2A0(3) +A1(3) = 2A0(1) + 2A1(1) = A0(0) +A1(0) = 1

which confirms that C(35) ≡ 1 modulo 3. We note that the above scheme is equivalent to the one
given in [15, Example 1.1] though for the latter A0(n) +A1(n) is chosen as the second state.

A linear p-scheme is called an automatic p-scheme if, for all i, the right-hand side of (7) is

either 0 or of the form Aσ(k,i)(n) for some σ(k, i) (that is, α
(k)
i,j = 0 if j 6= σ(k, i) and α

(k)
i,j = 1 if

j = σ(k, i)). As indicated in Example 2.2 below, an automatic p-scheme is equivalent to a finite
state automaton describing the sequence A(n). Note that we find it convenient in practice to allow
0 as a right-hand side of (7) though one could certainly disallow this possibility at the potential
cost of introducing an additional state representing the zero sequence.

Example 2.2. The 3-scheme in Example 2.1 is not automatic (if it were then, for instance, the
right-hand side of A0(3n) = A0(n) +A1(n) would have to equal one of A0(n), A1(n), or 0; neither
of these is the case as we can easily see directly or by computing the first few terms). However, at
the cost of increasing the number of states from two to four, an equivalent automatic 3-scheme for
the Catalan numbers C(n) modulo 3 can be obtained as:

A0(3n) = A1(n)
A0(3n+ 1) = A1(n)
A0(3n+ 2) = A2(n)

A1(3n) = A1(n)
A1(3n+ 1) = A3(n)
A1(3n+ 2) = 0

A2(3n) = A3(n)
A2(3n+ 1) = 0
A2(3n+ 2) = A2(n)

A3(3n) = A3(n)
A3(3n+ 1) = A1(n)
A3(3n+ 2) = 0

5

with initial conditions

A0(0) = 1, A1(0) = 1, A2(0) = 2, A3(0) = 2.

The corresponding finite state automaton matches Figure 1 from Example 1.2, where A0 is the
initial node, A1 is the top-right node, A2 is the bottom-left node, and A3 the bottom-right node.
We note that the finite state automaton features a fifth node that explicitly represents the zero
state (slight caution is needed when referring to the number of states as these might differ by one:
the p-scheme has four states while the corresponding automaton has five states).

2.2 Scaling schemes

As somewhat illustrated by Examples 2.1 and 2.2, linear schemes typically require substantially
fewer states than corresponding automatic schemes, which can make them considerably less costly
to compute. On the other hand, automatic schemes have the advantage of typically being much
easier to analyze. For instance, an automatic scheme makes it trivial to determine which values are
obtained by the underlying sequence: namely, these are precisely the initial conditions (assuming
that each node in the corresponding finite state automaton is reachable from the initial node, which
is always the case when following the construction in [20] which is summarized below). On the other
hand, it can be computationally expensive to extract this information from a linear scheme.

Aiming to combine the benefits of automatic and linear schemes, we consider schemes with the
property that, for all i, the right-hand side of (7) consists of at most one term (that is, for each k

and i, there is at most one j such that α
(k)
i,j 6= 0). We refer to these as scaling schemes.

Example 2.3. Continuing Examples 2.1 and 2.2, the following defines a scaling 3-scheme for the
Catalan numbers C(n) modulo 3:

A0(3n) = A1(n)
A0(3n+ 1) = A1(n)
A0(3n+ 2) = 2A2(n)

A1(3n) = A1(n)
A1(3n+ 1) = 2A1(n)
A1(3n+ 2) = 0

A2(3n) = A1(n)
A2(3n+ 1) = 0
A2(3n+ 2) = A2(n)

with initial conditions
A0(0) = 1, A1(0) = 1, A2(0) = 1.

We observe that it is straightforward to convert from a scaling scheme to an automatic one, and vice
versa. To wit, let B0, B1, B2, B3 denote the four states of the automatic scheme from Example 2.2.
Then B0 = A0, B1 = A1, B2 = 2A2, B3 = 2A1.

2.3 An algorithm to compute congruence schemes

Rowland and Zeilberger [20] offer the following algorithm to produce linear p-schemes for a sequence
A(n) represented as the constant terms A(n) = ct[P (x)nQ(x)] defined over R = Z/pr, the integers
modulo pr. Since we are working over the ring R, all corresponding equalities below are to be
understood as congruences modulo pr.

Starting with the state A0(n) = ct[P (x)nQ(x)], we iteratively build a collection A0, A1, . . . of
states Ai(n) = ct[Pi(x)nQi(x)] as follows. For each state Ai and for each k ∈ {0, 1, . . . , p− 1}, we
either express Ai(pn+k) in terms of existing states or we add a new state. More precisely, to begin
with, we write

Ai(pn+ k) = ct[P̂ (x)nQ̂(x)], (8)

6

with P̂ , Q̂ obtained as follows: let P̃ (x) = Pi(x)p and Q̃(x) = Pi(x)kQi(x). If P̃ (x) = P̂ (xp) for
some P̂ , then, using (6),

Ai(pn+ k) = ct[Pi(x)pnPi(x)kQi(x)] = ct[P̃ (x)nQ̃(x)]

= ct[P̂ (xp)nQ̃(x)] = ct[P̂ (x)nΛp[Q̃(x)]] = ct[P̂ (x)nQ̂(x)]

for Q̂(x) = Λp[Q̃(x)]. Otherwise, we let P̂ = P̃ and Q̂ = Q̃. If the right-hand side of (8), that

is ct[P̂ (x)nQ̂(x)], can be written as a linear combination of existing states Aj(n) (of the form

Aj(n) = ct[P̂ (x)nQj(x)]), then we move on to the next value of k (or to the next state Ai+1). On

the other hand, if ct[P̂ (x)nQ̂(x)] cannot be written as a linear combination of existing states Aj(n),

then we add ct[P̂ (x)nQ̂(x)] as a new state to our collection of states. In either case, Ai(pn + k)
can now be expressed as in (7) as a linear combination of states. If this algorithm terminates, it
therefore results in a linear p-scheme.

To see that the algorithm always terminates, first note that there are at most r different poly-
nomials Pi (which, by construction, are essentially of the form P (x)p

s

for some s) involved in the
states Ai(n) = ct[Pi(x)nQi(x)] because, for any Laurent polynomial F ∈ Z[x±1],

F (x)p
r

≡ F (xp)p
r−1

(mod pr). (9)

Congruence (9) is well-known (see, for instance, [19, Proposition 1.9]). Second, as Rowland and
Zeilberger [20] indicate, the degree (and low-degree) of the polynomials Qi can be bounded, so that
there are only finitely many possible states. We work out explicit bounds on the Qi in Theorem 2.4
below.

Before doing so, we observe that essentially the same algorithm works to compute automatic as
well as scaling schemes. Indeed, to obtain an automatic scheme, instead of checking whether (8)
can be written as a linear combination of existing states, we only check whether (8) is equal to an
existing state (and if it isn’t, we add (8) as a new state). Likewise, to obtain a scaling scheme,
we check whether (8) is equal to a multiple of an existing state. In either case, the algorithm is
guaranteed to terminate for the same reason: namely, that there are only finitely many possible
states.

2.4 Bounding the number of states

Let dg : R[x±1]→ Z≥0 denote any integer-valued degree-like function on Laurent polynomials, by
which we mean that, for any P,Q ∈ R[x±1],

dg(PQ) ≤ dg(P) + dg(Q), dg(Λp[Q]) ≤ dg(Q)

p
.

For instance, dg(Q) could be the total degree of Q, or dg(Q) could be the degree (or low-degree)
with respect to any particular variable. We note that bounds similar to those in the next result are
derived by Rowland and Yassawi [19] in the case of constructing automatic p-schemes for diagonals
of rational functions.

Theorem 2.4. The above construction of a p-scheme (whether automatic, scaling or linear) for
A0(n) = ct[P (x)nQ(x)] modulo pr results in the states Ai(n) = ct[Pi(x)nQi(x)] with at most r
choices for Pi(x). Moreover, we have

dg(Qi) ≤ pr−1a− 1 + max(0, b− a+ 1),

7

where a = dg(P) and b = dg(Q).

Proof. As mentioned earlier, it is a consequence of congruence (9) that there are at most r different
polynomials Pi. By construction, each state Ai(n) = ct[Pi(x)nQi(x)] with i ≥ 1 is obtained as

Ai(n) = A0(psn+ k)

for some s ≥ 1 and some k ∈ {0, 1, . . . , ps − 1}. If s < r, then

A0(psn+ k) = ct[P (x)p
snP (x)kQ(x)],

in which case

dg(Qi) ≤ dg(P (x)kQ(x)) ≤ ka+ b ≤ (pr−1 − 1)a+ b = pr−1a+ (b− a). (10)

On the other hand, if s ≥ r, then it follows from (9) that

P (x)p
s

≡ P (xp
s−r+1

)p
r−1

(mod pr)

and, hence,

A0(psn+ k) = ct[P (x)p
snP (x)kQ(x)]

≡ ct[P (xp
s−r+1

)p
r−1nP (x)kQ(x)] (mod pr)

= ct[P (x)p
r−1nΛs−r+1

p [P (x)kQ(x)]].

In particular, in this case,

dg(Qi) ≤ dg(Λs−r+1
p [P (x)kQ(x)]) (11)

≤ ka+ b

ps−r+1
≤ (ps − 1)a+ b

ps−r+1
= pr−1a+

b− a
ps−r+1

≤
{
pr−1a+ b−a

p , if b ≥ a,
pr−1a− 1, if b < a.

Combining (10) and (11), we obtain the claimed bound.

We note that in the special case r = 1, where we are working modulo a prime p, the degree
bounds are independent of p.

Corollary 2.5. The above construction of a p-scheme for ct[P (x)nQ(x)] modulo p results in states
Ai(n) = ct[P (x)nQi(x)] with

dg(Qi) ≤ max(dg(P)− 1,dg(Q)).

Proof. This is the special case r = 1 of Theorem 2.4. (Note that in this case Pi(x) = P (x) because
P (x)pn ≡ P (xp)n modulo p.)

Example 2.6. Suppose that we want to compute an automatic 2-scheme for the Motzkin numbers
modulo 2. By (4), M(n) = ct[P (x)nQ(x)] for P (x) = x−1 + 1 + x and Q(x) = 1 − x2. Hence,
choosing dg to be the usual degree in Theorem 2.4, we have a = 1 and b = 2. On the other hand,
choosing dg to be the low-degree, we have a = 1 and b = 0. We thus obtain the bounds

deg(Qi) ≤ 2, low-deg(Qi) ≤ 0.

8

Therefore, all states are of the form Ai(n) = ct[P (x)nQi(x)] with Qi = αi + βix + γix
2 for some

αi, βi, γi ∈ {0, 1}. In particular, we know a priori that the desired 2-scheme can have at most
23 = 8 states. In fact, as made explicit in [20], there exists such a scheme with 4 states. (In [20],
the computation is performed using 30 as an upper bound for the maximum number of acceptable
states. The general bounds discussed here show that we can confidently proceed without imposing
an upper bound during the construction of the congruence scheme.)

Example 2.7. Likewise, for computing an automatic p-scheme for the Motzkin numbers modulo
pr, we find that

deg(Qi) ≤ pr−1 + 1, low-deg(Qi) ≤ pr−1 − 1. (12)

In fact, as described in more detail in Example 2.8 below, the symmetry between x and x−1 in
P (x) = x−1 + 1 + x makes it possible to replace x−1 by x in Q and to thus choose the Qi such
that low-deg(Qi) = 0. Hence, all states can be expressed as Ai(n) = ct[Pi(x)nQi(x)] with at most
r possibilities for Pi as well as Qi with degree at most pr−1 + 1 and low-degree 0. This implies that
there is an automatic p-scheme with at most r · (pr)pr−1+2 = r · pr(pr−1+2) many states.

We can slightly improve this bound by observing that “most” states involve the Pi of highest
degree. Indeed, it follows from (9) that, in the absence of further simplification, each polynomial

Pi is one of P (x)p
j

for j ∈ {0, 1, . . . , r − 1}. In that case, the states involving P (x)p
j

for j < r − 1

correspond to A0(pjn + k) for some k ∈ {0, 1, . . . , pj − 1}, while all other states involve P (x)p
r−1

.

In particular, there are at most pj many states involving P (x)p
j

for j < r − 1. Therefore, there is
an automatic p-scheme for the Motzkin numbers modulo pr with at most

1 + p+ p2 + · · ·+ pr−2 + pr(p
r−1+2) =

pr−1 − 1

p− 1
+ pr(p

r−1+2) (13)

many states, improving the earlier bound of r · pr(pr−1+2).
For instance, for the Motzkin numbers modulo 4 this means there is an automatic scheme with

at most 1 + 28 = 257 states. However, there exists such a scheme with only 14 states. In general,
while the bounds for deg(Qi) appear to be sharp, the resulting doubly-exponential bounds on the
total number of states are far from effective. For the minimal numbers of states for small r, we
refer to Example 4.4.

In the case of linear schemes, the above considerations imply that there is a linear p-scheme for
the Motzkin numbers modulo pr with at most

(1 + p+ p2 + · · ·+ pr−2) + (pr−1 + 2) =
pr − 1

p− 1
+ 2 (14)

many states. In particular, there is a linear 2-scheme for the Motzkin numbers modulo 2r with at
most 2r + 1 many states. We note that the bounds (14) confirm weaker bounds conjectured by
Henningsen [14] for p = 2 and p = 3.

In the same spirit, for scaling schemes, one can derive bounds for the maximum number of
required states which are lower than (13) (the improved bounds are a bit worse than (13) divided
by pr) but significantly higher than (14). As in the case of automatic schemes, these bounds appear
to not be effective. It would be of considerable interest to obtain sharper bounds for automatic and
scaling schemes, even if restricted to certain families of constant terms.

9

Example 2.8. Recall from (4) that the Motzkin numbers have the constant term representation
M(n) = ct[(x−1 + 1 + x)n(1 − x2)]. When computing a 2-scheme for M(n) modulo 4, we obtain,
for instance,

M(2n+ 1) = ct[(x−1 + 1 + x)2n(x−1 + 1 + x)(1− x2)]

= ct[(x−1 + 1 + x)2n(x−1 + 1− x2 − x3)].

Note that x−1 + 1 − x2 − x3 has degree 3 and low-degree 1 consistent with (12) for p = 2, r =
2. On the other hand, the symmetry between x and x−1 in P (x) = x−1 + 1 + x implies that
ct[(x−1 + 1 + x)2nx−1] = ct[(x−1 + 1 + x)2nx] so that

M(2n+ 1) = ct[(x−1 + 1 + x)2n(1 + x− x2 − x3)].

This observation allows us to write all states in the form ct[Pi(x)nQi(x)] with low-deg(Qi) = 0.
Note that this observation similarly applies to the computation of p-schemes for any constant term
A(n) = ct[P (x)nQ(x)] modulo any pr provided that there are symmetries in P (x) among the
variables x±1. Basic such symmetries are automatically taken into account by the implementation
discussed in Section 4.

Example 2.9. Recall from (3) that the Catalan numbers have the constant term representation
C(n) = ct[P (x)nQ(x)] with P (x) = x−1 + 2 + x and Q(x) = 1− x. Proceeding as in Example 2.7,
we find the corresponding bounds deg(Qi) ≤ pr−1 and low-deg(Qi) = 0. Consequently, there is a
linear p-scheme for the Catalan numbers modulo pr with at most

(1 + p+ p2 + · · ·+ pr−2) + (pr−1 + 1) =
pr − 1

p− 1
+ 1 (15)

many states. In particular, in the case r = 1, we conclude that there is a linear p-scheme for the
Catalan numbers modulo p with 2 states. These schemes are made explicit in [15] where they are
interpreted as generalized Lucas congruences.

For p = 2 and r > 1, the bound (15) can be improved by the observation P (x) = (x−1/2 +x1/2)2

which implies that

P (x)2
r−1

≡ P (x2)2
r−2

(mod 2r),

while, by (9), this congruence only holds modulo 2r−1 for general P (x). Using this congruence
in place of (9) in the proof of Theorem 2.4, we find that it is possible to express every state

ct[Pi(x)nQi(x)] so that each Pi is one of P (x)2
j

for j ∈ {0, 1, . . . , r − 2} and so that the stronger
bound deg(Qi) ≤ 2r−2 holds. Accordingly, if r > 1, there is a linear 2-scheme for the Catalan
numbers modulo 2r with at most

(1 + 2 + 22 + · · ·+ 2r−3) + (2r−2 + 1) = 2r−1 (16)

many states. The bounds (15) and (16) confirm weaker bounds conjectured by Henningsen [14].

It would be of interest to determine whether the bounds (14) as well as (15) and (16) for the
number of states of linear p-schemes can be further improved.

10

3 Schemes for p-adic valuations and applications

3.1 Computing schemes for p-adic valuations

As usual, the p-adic valuation of a nonzero integer c, denoted by νp(c), is the largest r such that pr

divides c. Suppose that a sequence A(n) is such that its values modulo pr are p-automatic (which
includes any sequence that can be represented using constant terms). Rowland and Yassawi [19]
observe that, if A(n) is not divisible by arbitrarily large powers of p, then the sequence of p-adic
valuations of A(n) is p-automatic as well. Indeed, if νp(A(n)) ≤ r for all n, then an automatic
p-scheme for νp(A(n)) can be easily obtained from an automatic p-scheme for A(n) modulo pr.

Moreover, it is not hard to see that, along the same lines, a (scaling) p-scheme for νp(A(n))
can be obtained from a scaling p-scheme for A(n) modulo pr. Namely, suppose we have a scaling
p-scheme for a sequence A(n) modulo pr. Let Ai be the states of this scheme. By construction,
each transition is of the form

Ai(pn+ k) ≡ α(k)
i Aσ(i,k)(n) (mod pr).

Replacing each transition factor α = α
(k)
i with pνp(α), and likewise replacing each initial condition,

we obtain a p-scheme that computes pνp(A(n)) modulo pr. If νp(A(n)) ≤ r, the values pνp(A(n))

modulo pr are in one-to-one correspondence with the values of νp(A(n)), so that this scaling p-
scheme characterizes the p-adic valuation of A(n).

If we make the reasonable assumption that, in the algorithm described in Section 2.3, the cost
of checking whether (8) is an existing state is essentially equal to the cost of checking whether (8)
is a multiple of an existing state, then computing a scaling scheme is at least as fast as computing
an automatic scheme. On the other hand, in many practical examples, such as the one described
in Section 3.3, computing a scaling scheme is considerably faster and results in schemes with sig-
nificantly reduced numbers of states. This makes scaling schemes particularly well suited for the
purpose of computing schemes that describe p-adic valuations.

3.2 Reproving a conjecture on Motzkin numbers modulo 8

As an examplary application, we reprove the following result that was conjectured by Amdeberhan,
Deutsch and Sagan [10, Conjecture 5.5] and (much more laboriously) proven by Eu, Liu and Yeh
[11].

Theorem 3.1. The 2-adic valuation of the Motzkin numbers M(n) is

ν2(M(n)) =

 2, if n = (4i+ 1)4j+1 − 1 or n = (4i+ 3)4j+1 − 2 with i, j ∈ Z≥0,
1, if n = (4i+ 1)4j+1 − 2 or n = (4i+ 3)4j+3 − 1 with i, j ∈ Z≥0,
0, otherwise.

Proof. We begin by following the approach of Rowland and Yassawi [19] who computed a finite
state automaton representing Motzkin numbers modulo 8 and used it to conclude that no Motzkin
number is 0 modulo 8. In particular, this implies ν2(M(n)) < 3 so that, by the argument given in
Section 3.1, Rowland and Yassawi were able to conclude that the sequence of 2-adic valuations of
Motzkin numbers is 2-automatic. Indeed, they provided a corresponding finite state automaton with
17 states in [19, Figure 5]. Theorem 3.1 could be derived by a careful analysis of this automaton.

11

However, we can slightly simplify this automaton (as well as the ensuing analysis) as follows.
Starting with the constant term representation (4) of the Motzkin numbers, we use our implemen-
tation to compute the simplified finite state automaton with 10 states for ν2(M(n)) depicted in
Figure 2 (see Example 4.10 for the details on this automatic computation).

0start 0 1 2

0

0

1

2

1

2

0

1

0

0

0

0

0

1

1

0

0,1 0,1 0,1

1

1

Figure 2: Congruence automaton for 2-adic valuations of the Motzkin numbers

We claim that the automaton in Figure 2 contains the same information as the formula in
Theorem 3.1. In the sequel, we will give the details for the case ν2(M(n)) = 2, and omit those for
ν2(M(n)) = 1 because the argument is the same.

The n with ν2(M(n)) = 2 are those with a binary expansion that when fed into the automaton
in Figure 2 ends up in a state with label 2. Inspection of the automaton reveals that one way
(namely moving along the upper part of the automaton) of ending up in a state with label 2 is to
begin with 0, then 1, followed by 2j times the digit 1 where j ≥ 0 is arbitrary, followed by 0, then
1, followed by any further sequence of digits. Suppose that the final further sequence of digits by
itself represents the number i. Further suppose that the string of 2j+ 4 digits preceding i (namely,
012j+101) represents the number 22j+4 − 22j+2 − 2 = 3 · 4j+1 − 2. Then the overall string of digits
represents the number

n = 3 · 4j+1 − 2 + 22j+4 · i = (4i+ 3)4j+1 − 2,

matching one of the two possibilities listed in the claimed formula. In the same manner, the other
possibility, namely n = (4i + 1)4j+1 − 1, corresponds to moving along the bottom part of the
automaton to end up in a state with label 2 (and it is clear from the automaton that there is no
further way of ending up in a state with label 2).

3.3 A conjecture on Motzkin numbers modulo p2

The simple observation that scaling p-schemes are suitable for computing a p-scheme for the p-adic
valuations of a sequence helps make computations feasible that were previously out of reach. We
illustrate this in the case of an interesting open question posed by Rowland and Yassawi [19], which

12

asks whether there exist infinitely many primes p such that M(n) 6≡ 0 (mod p2) for all n ∈ Z≥0.
By computing congruence schemes modulo 52 and 132, Rowland and Yassawi showed that p = 5
and p = 13 are two primes with this property and offered the following conjecture:

Conjecture 3.2 ([19, Conjecture 3.10]). Let p ∈ {31, 37, 61}. For all n ∈ Z≥0, M(n) 6≡ 0
(mod p2).

We prove this conjecture and extend it to include three further cases.

Theorem 3.3. Let p ∈ {5, 13, 31, 37, 61, 79, 97, 103}. For all n ∈ Z≥0, M(n) 6≡ 0 (mod p2). For
any other prime p < 200, there exists n such that p2 divides M(n).

Proof. Let p be any prime number. Using the constant term representation (4), we proceed by
computing a scaling p-scheme for the Motzkin numbers M(n) modulo p2. As described above,
we then use this scheme to construct a (considerably simpler) p-scheme for pνp(M(n)) modulo p2.
Inspection of that scheme makes it straightforward to test whether there exists an index n such
that pνp(M(n)) ≡ 0 modulo p2. The latter is equivalent to testing whether M(n) ≡ 0 modulo p2. We
implemented this approach in the computer algebra system Sage, described in Section 4, and carried
out the computations for all primes p < 200. Further details of this computation are included in
Example 4.11.

As noted above, the cases p = 5 and p = 13 of Theorem 3.3 were already established in [19,
Theorem 3.8 & 3.9]. Rowland and Yassawi report that the computation modulo 132 took about 40
minutes. On our basic laptop, Rowland’s impressive and more recent implementation [18] reduces
this time to about 2.5 minutes when using diagonals as in [19] and further to 30 seconds when
using constant terms as in [20]. On the other hand, the computation described in the proof of
Theorem 3.3 using a scaling 13-scheme only requires about half a second on the same laptop. Since
performing our calculations, we have further learned that Rowland has independently established
the cases p = 31 and p = 37 of Theorem 3.3 by using [18] to compute automatic p-schemes for
M(n) modulo p2. These automatic p-schemes are rather complex with 28,081 and 44,173 states,
respectively. On the other hand, the corresponding scaling p-schemes in our computation only have
125 and 149 states, respectively, making it possible to calculate them in less than a minute. It is
this reduction, which becomes more pronounced as the size of p increases, in the number of states
when using scaling over automatic schemes that made it feasible to compute p-schemes for M(n)
modulo p2 for all primes below 200 (that arbitrary limit could be pushed further but we hope that
it suffices to convince the reader of the utility of computing scaling schemes).

Example 3.4. For p = 83, the first Motzkin number that is divisible by p2 is

M(5,139,193) = 2,051,827,558,749, ,008,702,105,903,

where the right-hand side is an integer with 2,452,009 decimal digits. This indicates the difficulty of
predicting based on initial terms whether, given a prime p, there is a Motzkin number divisible by
p2. Of course, in the absence of further insight (such as an upper bound), computing initial terms by
itself can only identify those primes p for which there exists a Motzkin number divisible by p2. The
computation of an automatic or scaling scheme modulo p2, on the other hand, straightforwardly
settles this question in either case.

It would be of interest to analyze the p-schemes for Motzkin numbers modulo p2 in hopes of
discovering a characterization of those p for which no Motzkin number is divisible by p2. We do

13

not pursue this here since our focus is on our ability to compute these p-schemes in practice. As
we have demonstrated, using scaling p-schemes over automatic ones allows us to compute instances
that were previously out of reach.

4 A computer algebra implementation

4.1 Basic usage

In order to perform the computations described in Section 3.3 (which to our knowledge are not
within reach of previous implementations), we implemented the algorithm described in Section 2
in the open-source computer algebra system Sage [21]. Usage of this implementation is briefly
described in this section. First, however, we note that Rowland and Zeilberger [20] provide an
implementation in Maple for computing automatic and linear congruence schemes for the modulo
pr values of constant terms. Moreover, Rowland’s powerful Mathematica package IntegerSequences
[18] offers, among many other tools for working with k-regular sequences, methods for computing
finite state automata representing the modulo pr values of sequences (represented in various ways,
including as constant terms or diagonals). A subset of the algorithms of [20] have also been im-
plemented by Joel Henningsen in Sage as part of his master’s thesis [14] under the direction of the
author. The performance and design lessons learned from Henningsen’s work have benefitted the
present implementation which is freely available at:

http://arminstraub.com/congruenceschemes

To use the package from within a recent version of Sage, we need to import its functionality:

>>> from congruenceschemes import *

Before turning to more advanced applications, we illustrate the basic usage by showing how the
congruence schemes from the introductory Examples 2.1, 2.2 and 2.3 can be computed.

Example 4.1. Using the constant term representation (3) for the Catalan numbers, we can compute
a linear 3-scheme for the Catalan numbers C(n) modulo 3 as follows:

>>> R.<x> = LaurentPolynomialRing(Zmod(3))

>>> S = CongruenceScheme(1/x+2+x, 1-x); S

Linear 3-scheme with 2 states over Ring of integers modulo 3

The resulting 3-scheme is the one described in Example 2.1. In the implementation, the initial
conditions and transitions (spelled out explicitly in Example 2.1) are encoded as follows:

>>> S.initial conds()

[1, 0]

>>> S.transitions()

[[{0: 1, 1: 1}, {0: 1, 1: 1}, {0: 2, 1: 1}],
[{}, {0: 1, 1: 1}, {0: 1, 1: 2}]]

Note that the transitions consist of two lists (one on each line in the above output), corresponding
to the two states A0, A1. Each list has three entries corresponding to the transitions 3n+ j for j ∈
{0, 1, 2}. For instance, the entry {0: 2, 1: 1} encodes the transition A0(3n+2) = 2A0(n)+A1(n).

14

http://arminstraub.com/congruenceschemes

Example 4.2. The automatic 3-scheme from Example 2.2 can be likewise computed:

>>> S = CongruenceSchemeAutomatic(1/x+2+x, 1-x)

>>> S.initial conds()

[1, 1, 2, 2]

>>> S.transitions()

[[{1: 1}, {1: 1}, {2: 1}], [{1: 1}, {3: 1}, {}],
[{3: 1}, {}, {2: 1}], [{3: 1}, {1: 1}, {}]]

In contrast to the previous example, we now have four states rather than two. The four lists
(two on each line in the above final output) correspond directly to the transitions spelled out in
Example 2.2.

Example 4.3. In the same manner, we can compute the three-state scaling 3-scheme from Exam-
ple 2.3:

>>> S = CongruenceSchemeScaling(1/x+2+x, 1-x)

>>> S.initial conds()

[1, 1, 1]

>>> S.transitions()

[[{1: 1}, {1: 1}, {2: 2}], [{1: 1}, {1: 2}, {}], [{1: 1}, {}, {2: 1}]]

4.2 Numbers of states

The present implementation tends to produce congruence schemes with fewer states than the Maple
implementation accompanying [20] because it implements certain ad-hoc optimizations such as,
most notably, the exploitation of symmetry described in Example 2.8. A valuable avenue for future
work would be to systematically study and implement further optimizations.

Example 4.4. For instance, automatic 2-schemes for the Motzkin numbers modulo 2r are computed
in [20], for r ∈ {1, 2, . . . , 5}, with Table 1 listing the number of states of the resulting schemes.

r 1 2 3 4 5 6 7 8

implementation in [20] 4 24 128 801 5093 > 104

present implementation 4 14 24 76 225 701 2810 8090

Table 1: Number of states in automatic schemes modulo 2r for Motzkin numbers.

Table 1 also lists the number of states of the schemes when computed using our implementation.
These numbers can be obtained (in about 90 seconds on a basic laptop) as follows:

>>> R.<x> = LaurentPolynomialRing(ZZ)

>>> P, Q = 1/x+1+x, 1-x^2

>>> schemes = [CongruenceSchemeAutomatic(P, Q, p=2, r=r) for r in [1..8]]

>>> [S.nr states() for S in schemes]

[4, 14, 24, 76, 225, 701, 2810, 8090]

As pointed out in Example 2.2, the corresponding finite state automata may have one additional
state (representing 0). The counts for these automata are:

15

>>> [S.nr states automaton() for S in schemes]

[5, 15, 24, 76, 225, 701, 2810, 8090]

These counts match the number of states of the finite state automata for Motzkin numbers
modulo 2r that we computed using Rowland’s Mathematica package [18]. Indeed, these numbers
of states are best possible because both Rowland’s Mathematica implementation and our Sage
implementation minimize the computed finite state automata in an additional (optional) post-
processing phase (our implementation presently employs Moore’s algorithm [16] for this purpose).

Question 4.5. Can we give an exact (or asymptotic) formula for the sequence 5, 15, 24, 76, 225,
701, 2810, 8090, . . . of the minimal numbers of states for finite state automata for Motzkin numbers
modulo 2r?

The corresponding question for linear (or scaling) 2-schemes for Motzkin numbers modulo 2r is
equally interesting and, possibly, more natural. In this direction, we recall from Example 2.7 that
there is a linear 2-scheme for the Motzkin numbers modulo 2r with at most 2r+1 many states (and,
for small r, such a scheme can be computed using our implementation). It is natural to wonder
whether it is possible to further reduce the number of states needed for these schemes.

In order to investigate such questions systematically, it would be valuable to extend the mini-
mization of automatic schemes to the case of scaling and linear schemes, as well as to analyze the
computational cost of doing so. Especially in the case of scaling schemes, Moore’s algorithm [16]
(and other known minimization algorithms) can likely be adapted for this purpose but we do not
pursue this question here.

4.3 Fast evaluation of sequences modulo m

As pointed out by Rowland and Zeilberger [20], one application of congruence schemes is the fast
evaluation of the underlying sequence modulo pr (and, hence, modulo any m by virtue of the
Chinese remainder theorem).

Example 4.6. As an example, it is shown in [20] that M(10100), the googol-th Motzkin number,
is 12 modulo 25. The following confirms this computation:

>>> R.<x> = LaurentPolynomialRing(Zmod(25))

>>> S = CongruenceScheme(1/x+1+x, 1-x^2)

>>> S.nth term(10^100)

12

Example 4.7. If we are able to evaluate a sequence modulo prime powers in a fast manner,
the Chinese remainder theorem allows us to evaluate the sequence modulo any modulus. For
illustration, it is computed in [20] in logarithmic time that M(10100) ≡ 187 modulo 1000, extending
the computation of the previous example. We further extend this computation and determine
M(10100) modulo 105:

>>> R.<x> = LaurentPolynomialRing(ZZ)

>>> S2 = CongruenceScheme(1/x+1+x, 1-x^2, p=2, r=5)

>>> S5 = CongruenceScheme(1/x+1+x, 1-x^2, p=5, r=5)

>>> S2.nth term(10^100).crt(S5.nth term(10^100))

27187

16

Accordingly, the last five decimal digits of the googol-th Motzkin number are 27187. These
computations took about a minute, with all but a fraction of a second spent on the computation
of the congruence scheme modulo 55.

4.4 Determining forbidden residues

Rowland and Yassawi [19] give several intriguing examples of sequences that avoid certain residues
modulo pr. Such results are often rather hard to obtain by hand but are automatic to prove by
computing an automatic p-scheme for the sequence of interest modulo pr (or can be deduced with
a little more effort from a scaling p-scheme). Here, we restrict ourselves to reproducing, and in one
case slightly extending, two of these results using our implementation.

Example 4.8. Chowla, J. Cowles and M. Cowles [6] conjectured, and Gessel [12] proved, that the
Apéry numbers (5) associated to ζ(3) are periodic modulo 8 alternating between the values 1 and
5. Based on the constant term representation (5), the following confirms that the Apéry numbers
A(n) modulo 8 only take the values 1 and 5:

>>> R.<x,y,z> = LaurentPolynomialRing(ZZ)

>>> P = ((x+y)*(1+z)*(x+y+z)*(1+y+z))/x/y/z

>>> S = CongruenceSchemeAutomatic(P, p=2, r=3); S

Linear 2-scheme with 3 states over Ring of integers modulo 8

>>> S.possible values()

{1, 5}

Moreover, as is done in [19], an inspection of the (particularly simple) automaton immediately
reveals that A(2n) ≡ 1 and A(2n+ 1) ≡ 5 modulo 8.

In general, however, as is illustrated by the next example, no such simple characterizations of
the values modulo pr are possible. Still, automatic (or scaling) congruence schemes can readily be
used to determine exactly which residues modulo pr are attained by a given sequence.

Example 4.9. Rowland and Yassawi [19] observe that certain residues modulo 2r are never attained
by the Catalan numbers C(n). For instance:

� C(n) 6≡ 3 (mod 4),

� C(n) 6≡ 9 (mod 16),

� C(n) 6≡ 17, 21, 26 (mod 32),

� C(n) 6≡ 10, 13, 33, 37 (mod 64).

These results can be confirmed with the following computation:

>>> R.<x> = LaurentPolynomialRing(Zmod(2^6))

>>> S = CongruenceSchemeScaling(1/x+2+x, 1-x)

>>> S.impossible values()

{3, 7, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 26, 27, 31, 33, 35, 37, 39,

41, 43, 47, 49, 51, 53, 55, 57, 58, 59, 63}
>>> len(S.impossible values())

30

17

This shows, in particular, that the Catalan numbers do not attain 30/26 = 46.875% of the
residues modulo 26. Based on the corresponding computations modulo 2r for r ≤ 9, Rowland and
Yassawi [19] pose the question whether the proportion of residues that are not attained by the
Catalan numbers modulo 2r tends to 1 as r → ∞. The proportions for r ≤ 14 are recorded in
Table 2 labeled as P (r). Further listed are the total number N(r) of residues not attained by the
Catalan numbers modulo 2r as well as the number A(r) = N(r)− 2N(r− 1) of additional residues
not attained (observe that, if C(n) 6≡ a modulo 2r−1, then we necessarily have C(n) 6≡ a modulo 2r;
A(r) counts those residues not covered by this observation; for instance, A(6) = 4 corresponding to
the residues 10, 13, 33, 37 not attained modulo 26, as listed above).

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14

P (r) 0 .25 .25 .31 .41 .47 .54 .59 .65 .69 .73 .76 .79 .82
N(r) 0 1 2 5 13 30 69 152 332 710 1502 3133 6502 13,394
A(r) 0 1 0 1 3 4 9 14 28 46 82 129 236 390

Table 2: The proportions and numbers of residues not attained by Catalan numbers modulo 2r.

The values for r ≤ 9 match those computed by Rowland and Yassawi [19], while we computed
the new values for 10 ≤ r ≤ 14 using our implementation (in about 3 hours).

Rowland and Yassawi [19] further pose the question whether there exist any residues modulo
3r that are not attained by the Catalan numbers. Proceeding as above, we are able to compute a
scaling 3-scheme for the Catalan numbers modulo 39 (in about 20 hours). That scheme then allows
us to deduce that the Catalan numbers attain all residues modulo 39.

4.5 Computing valuation schemes

Let us demonstrate how to compute the automatic 2-scheme for the 2-adic valuation of the Motzkin
numbers that we employed in the proof of Theorem 3.1.

Example 4.10. First, we compute an automatic 2-scheme for the Motzkin numbers modulo 8 as
follows:

>>> R.<x> = LaurentPolynomialRing(Zmod(8))

>>> S = CongruenceSchemeAutomatic(1/x+1+x, 1-x^2); S

Linear 2-scheme with 24 states over Ring of integers modulo 8

>>> S.impossible values()

{0}

The output is a scheme with 24 states that certifies that no Motzkin number M(n) is divisible
by 8, as conjectured by Amdeberhan, Deutsch and Sagan [10, Conjecture 5.5] and proven by Eu,
Liu and Yeh [11] as well as Rowland and Yassawi [19]. On the other hand, every other value modulo
8 is achieved. We then derive from this scheme, as described in Section 3.1, a scheme for 2ν2(M(n)):

>>> V = S.valuation scheme(); V

Linear 2-scheme with 10 states over Ring of integers modulo 8

>>> V.initial conds()

[1, 1, 1, 1, 2, 4, 2, 4, 2, 4]

>>> V.transitions()

18

[[{1: 1}, {2: 1}], [{3: 1}, {4: 1}], [{3: 1}, {5: 1}], [{3: 1}, {3: 1}],
[{6: 1}, {1: 1}], [{7: 1}, {2: 1}], [{8: 1}, {9: 1}], [{9: 1}, {8: 1}],
[{8: 1}, {8: 1}], [{9: 1}, {9: 1}]]

Relabeling the values of the initial conditions from 1, 2, 4 to 0, 1, 2, respectively, results in an
automatic 2-scheme for the 2-adic valuations of the Motzkin numbers. Indeed, this scheme directly
translates into the finite state automaton in Figure 2 (where the four vertically centered states
correspond to states 0, 3, 8, 9 in the above scheme), which we used to prove Theorem 3.1.

As another application of computing valuation schemes, let us demonstrate how to prove The-
orem 3.3 for the prime p = 13.

Example 4.11. The case p = 13 of Theorem 3.3 claims that no Motzkin number is divisible by
132. Rowland and Yassawi [19] prove this claim using an automatic 13-scheme for the Motzkin
numbers modulo 132. To perform this calculation using our implementation we can compute:

>>> R.<x> = LaurentPolynomialRing(Zmod(13^2))

>>> S = CongruenceSchemeAutomatic(1/x+1+x, 1-x^2); S

Linear 13-scheme with 2097 states over Ring of integers modulo 169

>>> S.impossible values()

{0}

The last output confirms that, indeed, M(n) 6≡ 0 modulo 132 for all n.
In principle, the same approach could be used for any prime. However, the above computation,

which takes a little over 10 seconds on a typical laptop (a slight improvement on the 30 seconds we
needed for the same computation on the same laptop using Rowland’s Mathematica implementation
[18], which considerably improves on the 40 minutes reported in [19]), for larger primes p quickly
becomes impractical even on much more powerful machines. Instead, as described in the proof of
Theorem 3.3, we first compute a scaling 13-scheme for the Motzkin numbers modulo 132, which
only takes about half a second:

>>> S = CongruenceSchemeScaling(1/x+1+x, 1-x^2); S

Linear 13-scheme with 48 states over Ring of integers modulo 169

We could again determine the impossible values from here but, especially for larger primes, it
is more efficient to derive from the above scheme a scheme for 13ν13(M(n)) modulo 132:

>>> V = S.valuation scheme(); V

Linear 13-scheme with 5 states over Ring of integers modulo 169

>>> V.possible values()

{1, 13}

The final output certifies that 13ν13(M(n)) only takes the values 1 or 13 modulo 132. Accordingly,
M(n) 6≡ 0 modulo 132.

To prove Theorem 3.3, we performed these computations for all primes p < 200. As indicated,
for larger primes it becomes computationally imperative to initially compute a scaling (rather than
an automatic) p-scheme for the Motzkin numbers modulo p2. For p = 61, the first previously open
case, the computation took about 10 minutes on a basic laptop, while the case p = 197 required
about 3 days of computation.

19

5 Conclusion

For the sake of exposition, we have focused on constant term sequences (1) though the general ideas,
such as the utility of scaling schemes, apply in the same manner to sequences that are diagonals of
rational functions. Constant term sequences, that is, sequences of the form a(n) = ct[P (x)nQ(x)]
for Laurent polynomials P,Q ∈ Z[x±1], can always be expressed as diagonals of rational functions.
As Zagier [23, p. 769, Question 2] and Gorodetsky [13] do in the case Q = 1, it is therefore natural
to ask which diagonal sequences are constant term sequences (1). This appears to be a difficult
problem, even for specific sequences. As an initial challenge, we invite the interested reader to
consider the following:

Question 5.1. Can the Fibonacci numbers Fn, the diagonal sequence of x/(1−x−x2), be expressed
as a constant term sequence? That is, are there P,Q ∈ Z[x±1] such that Fn = ct[P (x)nQ(x)]?

We observe that the Fibonacci numbers cannot be so expressed with Q = 1 (because they fail
to satisfy the Gauss congruences [4]).

On the other hand, diagonals of rational functions are somewhat better understood due to
recent results by Bostan, Lairez and Salvy [5] who show, among other results, that these can be
characterized as sequences expressible as multiple binomial sums.

One of the motivations for being able to efficiently compute congruence schemes is that it
enables us to observe new phenomena which would otherwise be more difficult to observe. For
instance, even in the case of the very well-studied Catalan numbers, Rowland and Yassawi [19]
reveal intriguing new questions by computing congruence schemes. For instance, as indicated in
Example 4.9, Rowland and Yassawi [19] pose the question whether the proportion of residues that
are not attained by the Catalan numbers modulo 2r tends to 1 as r →∞.

Rowland and Yassawi [19] further note that some residues are only attained finitely many times.
For instance, C(n) 6≡ 1 (mod 8) for n ≥ 2, and C(n) 6≡ 5, 10 (mod 16) for n ≥ 6. On the other
hand, we presently lack the tools to establish similar results modulo m if m is not a prime power.
This is illustrated, in the case m = 10, by the following conjecture due to Alin Bostan, observed in
2015 and popularized at the 80th Séminaire Lotharingien de Combinatoire in 2018.

Conjecture 5.2 (Bostan, 2015).

(a) For all n ≥ 0, C(n) 6≡ 3 (mod 10).

(b) For sufficiently large n, C(n) 6≡ 1, 7, 9 (mod 10).

In particular, this conjecture implies that the last digit of any sufficiently large odd Catalan
number is always 5.

Acknowledgements

The author thanks Alin Bostan for interesting discussions on diagonals and constant terms, as well
as for sharing the final conjecture. Support through a Collaboration Grant from the Simons Foun-
dation (#514645) is gratefully acknowledged. The author further thanks the anonymous referees
for their careful and helpful comments and suggestions.

20

Data availability statement

All data generated or analysed as part of this work has been produced, and can be reproduced,
using the author’s Sage package that is freely available at:
http://arminstraub.com/congruenceschemes

References

[1] J.-P. Allouche and J. Shallit. The ring of k-regular sequences. Theoretical Computer Science,
98(2):163–197, May 1992.

[2] J.-P. Allouche and J. Shallit. Automatic Sequences: Theory, Applications, Generalizations.
Cambridge University Press, Cambridge, 2003.

[3] R. Apéry. Irrationalité de ζ(2) et ζ(3). Astérisque, 61:11–13, 1979.

[4] F. Beukers, M. Houben, and A. Straub. Gauss congruences for rational functions in several
variables. Acta Arithmetica, 184:341–362, 2018.

[5] A. Bostan, P. Lairez, and B. Salvy. Multiple binomial sums. Journal of Symbolic Computation,
80.2:351–386, 2017.

[6] S. Chowla, J. Cowles, and M. Cowles. Congruence properties of Apéry numbers. Journal of
Number Theory, 12(2):188–190, May 1980.

[7] G. Christol. Globally bounded solutions of differential equations. In K. Nagasaka and E. Fouvry,
editors, Analytic Number Theory, number 1434 in Lecture Notes in Mathematics, pages 45–64.
Springer Berlin Heidelberg, Jan. 1990.

[8] G. Christol, T. Kamae, M. M. France, and G. Rauzy. Suites algébriques, automates et substi-
tutions. Bulletin de la Société Mathématique de France, 108(4):401–419, 1980.

[9] J. Denef and L. Lipshitz. Algebraic power series and diagonals. Journal of Number Theory,
26(1):46–67, May 1987.

[10] E. Deutsch and B. E. Sagan. Congruences for Catalan and Motzkin numbers and related
sequences. Journal of Number Theory, 117(1):191–215, Mar. 2006.

[11] S.-P. Eu, S.-C. Liu, and Y.-N. Yeh. Catalan and Motzkin numbers modulo 4 and 8. European
Journal of Combinatorics, 29(6):1449–1466, Aug. 2008.

[12] I. M. Gessel. Some congruences for Apéry numbers. Journal of Number Theory, 14(3):362–368,
June 1982.

[13] O. Gorodetsky. New representations for all sporadic Apéry-like sequences, with applications
to congruences. Experimental Mathematics, 2021. DOI:10.1080/10586458.2021.1982080.

[14] J. A. Henningsen. Sequences modulo primes and finite state automata. Master’s thesis, Uni-
versity of South Alabama, 2019.

21

http://arminstraub.com/congruenceschemes
https://doi.org/10.1080/10586458.2021.1982080

[15] J. A. Henningsen and A. Straub. Generalized Lucas congruences and linear p-schemes. Preprint,
Nov. 2021. arXiv:2111.08641.

[16] E. F. Moore. Gedanken-experiments on sequential machines. In Automata studies, Annals
of Mathematics Studies, no. 34, pages 129–153. Princeton University Press, Princeton, N.J.,
1956.

[17] A. v. d. Poorten. A proof that Euler missed ... Apéry’s proof of the irrationality of ζ(3).
Mathematical Intelligencer, 1(4):195–203, 1979.

[18] E. Rowland. IntegerSequences: A package for computing with k-regular sequences. In J. H.
Davenport, M. Kauers, G. Labahn, and J. Urban, editors, Mathematical Software – ICMS
2018, volume 10931, pages 414–421. Springer, Cham, 2018.

[19] E. Rowland and R. Yassawi. Automatic congruences for diagonals of rational functions. Journal
de Théorie des Nombres de Bordeaux, 27(1):245–288, 2015.

[20] E. Rowland and D. Zeilberger. A case study in meta-automation: automatic generation of
congruence automata for combinatorial sequences. Journal of Difference Equations and Appli-
cations, 20(7):973–988, 2014.

[21] Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.3), 2021.
https://www.sagemath.org.

[22] R. P. Stanley. Catalan Numbers. Cambridge University Press, Cambridge, 2015.

[23] D. B. Zagier. The arithmetic and topology of differential equations. In V. Mehrmann and
M. Skutella, editors, Proceedings of the European Congress of Mathematics, Berlin, 18-22
July, 2016, pages 717–776. European Mathematical Society, 2018.

22

http://arxiv.org/abs/2111.08641

	Preliminaries
	Introduction
	Introductory examples
	Notation

	Congruence schemes
	Linear and automatic congruence schemes
	Scaling schemes
	An algorithm to compute congruence schemes
	Bounding the number of states

	Schemes for p-adic valuations and applications
	Computing schemes for p-adic valuations
	Reproving a conjecture on Motzkin numbers modulo 8
	A conjecture on Motzkin numbers modulo p2

	A computer algebra implementation
	Basic usage
	Numbers of states
	Fast evaluation of sequences modulo m
	Determining forbidden residues
	Computing valuation schemes

	Conclusion

