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Abstract
We consider asymptotics of power series coefficients of rational functions of the form 1/Q where
Q is a symmetric multilinear polynomial. We review a number of such cases from the literature,
chiefly concerned either with positivity of coefficients or diagonal asymptotics. We then ana-
lyze coefficient asymptotics using ACSV (Analytic Combinatorics in Several Variables) methods.
While ACSV sometimes requires considerable overhead and geometric computation, in the case
of symmetric multilinear rational functions there are some reductions that streamline the analy-
sis. Our results include diagonal asymptotics across entire classes of functions, for example the
general 3-variable case and the Gillis-Reznick-Zeilberger (GRZ) case, where the denominator in
terms of elementary symmetric functions is 1− e1 + ced in any number d of variables. The ACSV
analysis also explains a discontinuous drop in exponential growth rate for the GRZ class at the
parameter value c = (d − 1)d−1, previously observed for d = 4 only by separately computing
diagonal recurrences for critical and noncritical values of c.

2012 ACM Subject Classification Mathematics of computing → Combinatorics

Keywords and phrases Analytic combinatorics, Generating function, Coefficient, Lacuna, Posi-
tivity, Morse theory, D-finite, Smooth point

Acknowledgements Thanks to the Erwin Schrödinger Institute, at which this work was begun.
Thanks also to Petter Brändén for help with Lemma 15.

1 Partially supported by NSF grant DMS-1622370
2 Partially supported by an NSERC postdoctoral fellowship and NSF grant DMS-1612674
3 Partially supported by NSF grant DMS-1612674
4 Partially supported by a Simons Collaboration Grant

mailto:ymb@illinois.edu
mailto:smelczer@sas.upenn.edu
https://orcid.org/0000-0002-0995-3444
mailto:pemantle@math.upenn.edu
mailto:straub@southalabama.edu
https://orcid.org/0000-0001-6802-6053


12:2 Diagonal asymptotics for symmetric rational functions via ACSV

1 Introduction

We study the power series coefficients of rational functions of the form F (x1, . . . , xd) =
1/Q(x1, . . . , xd) where Q is a symmetric multilinear function with Q(0) 6= 0. Let

F (x) = 1
Q(x) =

∑
r∈Zd

arxr,

converging in some polydisk D ⊂ Cd. Often one focuses on the diagonal coefficients
δn := an,...,n, whose univariate generating function diagF (z) :=

∑
n δnz

n satisfies a linear
differential equation with polynomial coefficients, but may be transcendental. A number of
questions are natural, including nonnegativity (are all coefficients nonnegative), eventual
nonnegativity (all but finitely many coefficients nonnegative), diagonal extraction (computing
diagF from Q), diagonal asymptotics, multivariate asymptotics and phase transitions in the
asymptotics of {ar}.

The positivity (nonnegativity) question is the most classical, dating back at least to
Szegő’s work in [26]. The techniques, some of which are indicated in the next section, used
in the literature are diverse and include integral methods and special functions, positivity
preserving operators, combinatorial identities, computer algebra such as cylindrical algebraic
decomposition, or determinantal methods. Contrasting to these methods are analytic
combinatorial several-variable methods (ACSV) as developed in [20]. These are typically
asymptotic, rather than exact, and therefore less useful for proving classical positivity
statements, though they can be used to disprove them. Their chief advantages are their
broad applicability and, increasingly, the level to which they have been automated. Our
aim in this paper is to apply ACSV methods to a number of previously studied families of
rational coefficient sequences, thereby extending what is known as well as illuminating the
relative advantages of each method.

1.1 Previously studied instances

LetMd denote the class of symmetric functions of d variables that are multilinear (degree 1
in each variable). This class of generating functions F (x) := 1/Q(x) where Q ∈Md includes
a great number of previously studied cases, some of which we now review. Here and in the
following, we use d for the number of variables and boldface x,y, z, etc., for vectors of length
d of integer, real or complex numbers. When d is small we use x, y, z, w for x1, x2, x3, x4.
Let ek = ek,d denote the kth elementary symmetric function of d variables, the sum of all
distinct k element products from the set of d variables. An equivalent description of the class
Md is that it contains all linear combinations of {ek,d : 0 ≤ k ≤ d}.

The Askey-Gasper rational function is

A(x, y, z) := 1
1− x− y − z + 4xyz , (1)

which, in the previous notation, is A(x) = F (x) when d = 3 and Q = 1− e1 + 4e3. Gillis,
Reznick and Zeilberger [11] deduce positivity of A from positivity of a 4-variate extension
due to Koornwinder [15], for which they give a short elementary proof using a positivity
preserving operation. Gillis, Reznick and Zeilberger also provide an elementary proof of the
stronger result by Askey and Gasper [3] that Aβ is positive for β ≥ (

√
17− 3)/2 ≈ 0.56, by

deriving a recurrence relation for the coefficients that makes positivity apparent.
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Specific functions inM4 that have shown up in the literature include the Szegő rational
function

S(x, y, z, w) := 1
e3(1− x, 1− y, 1− z, 1− w) (2)

as well as the Lewy-Askey function

L(x, y, z, w) := 1
e2(1− x, 1− y, 1− z, 1− w) , (3)

which is a rescaled version of 1/Q(x) with d = 4 and Q = 1−e1 + 2
3e2. Szegő [26] proved that

(2) is positive. In fact, he showed that e−βd−1,d(1−x) is nonnegative if β ≥ 1/2. His proof relates
the power series coefficients to integrals of products of Bessel functions and, among other
ingredients, employs the Gegenbauer–Sonine addition theorem. Scott and Sokal [22] establish
a vast and powerful generalization of this result by showing that, if TG is the spanning-tree
polynomial of a connected series-parallel graph, then T−βG (1− x) is nonnegative if β ≥ 1/2.
In the simplest non-trivial case, if G is a d-cycle, then TG = ed−1,d, thus recovering Szegő’s
result. Relaxing the condition on β, Scott and Sokal further extend their results to spanning-
tree polynomials of general connected graphs. They do so by realizing that Kirchhoff’s
matrix-tree theorem implies that these polynomials can be expressed as determinants, and
by proving that determinants of this kind are nonnegative. As another consequence of
this determinantal nonnegativity, Scott and Sokal conclude that (3) is nonnegative, thus
answering a question originating with Lewy [2] (with positivity replaced by nonnegativity).
Kauers and Zeilberger [14] show that positivity of the Lewy-Askey rational function (3)
would follow from positivity of the four variable function

K(x, y, z, w) := 1
1− e1 + 2e3 + 4e4

. (4)

However, the conjectured positivity (or even nonnegativity) of (4) remains open.
As noted above, e−βd−1,d(1− x) is nonnegative if β ≥ 1/2. The asymptotics of e−βk,d(1− x)

are computed in [5] for (k, d) = (2, 3). In the cone 2(rs + rt + st) > r2 + s2 + t2, the
coefficient ar,s,t is asymptotically positive when β > 1/2 = (d− k)/2 and not when β < 1/2.
A conjecture of Scott and Sokal that remains open in both directions is that, for general
k and d, the condition β ≥ (d − k)/2 is necessary and sufficient for nonnegativity of the
coefficients of e−βk,d(1− x).

Gillis, Reznick and Zeilberger [11] consider the family

Fc,d(x1, . . . , xd) := 1
1− e1 + c ed

(5)

of rational functions, where c is a real parameter. When c < 0, the coefficients are trivially
positive, therefore it is usual to assume c > 0. Gillis, Reznick and Zeilberger show that Fc,3
has nonnegative coefficients if c ≤ 4 (and this condition is shown to be necessary in [23]),
but they conjecture that the threshold for d ≥ 4 has a different form, namely that Fc,d has
nonnegative coefficients if and only if c ≤ d!. It is claimed in [11], but the proof is omitted
due to its length, that nonnegativity of Fd!,d is implied by nonnegativity of the diagonal
power series coefficients. In the cases d = 4, 5, 6, Kauers [13] proved nonnegativity of these
diagonal coefficients by applying cylindrical algebraic decomposition (CAD) to the respective
recurrences. On the other hand, it is suggested in [25] that the diagonal coefficients are
eventually positive if c < (d− 1)d−1.
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1.2 Previous questions and results on diagonals
The diagonal generating function diagF and the sequence δn := an,...,n it generates have
received special attention. One reason is that the question of multivariate asymptotics in
the diagonal direction is simply stated, whereas the question of asymptotics in all possible
directions requires discussion of different possible phase regimes, a notion of uniformity over
directions, degeneracies when the coordinates are not of comparable magnitudes, and so
forth. Another reason is that there are effective methods for determining diagF from Q,
transferring the problem to the familiar univariate realm.

We briefly recall the theory of diagonal extraction. A d-variate power series F is said to
be D-finite if the formal derivatives {∂rF : r ∈ (Z+)d} form a finite dimensional vector space
over C[x]. In one variable, this is equivalent to F satisfying a linear differential equation
with polynomial coefficients,

k∑
i=0

qi(z)
di

dzi
F = 0, qi ∈ C[z].

I Proposition 1 (D-finite closure under diagonals [17]). Let F (x) be a D-finite power series.
Then diag(z) :=

∑
n δnz

n is D-finite, where δn := an,...,n.

When F is a rational function and d = 2, it was known that diag is algebraic (and thus
D-finite) at least by the late 1960’s [10, 12], and in special cases by Pólya in the 1920’s [21].
In the rational function F (x, y) = P (x, y)/Q(x, y) one substitutes y = 1/x and computes a
residue integral to extract the constant coefficient. The basis for Lipshitz’ proof was the
realization that the complex integration can be viewed as purely formal. With the advent of
computer algebra this formal D-module computation was automated, with an early package
in Macaulay and more widely used modern implementations in Magma, Mathematica and
Maple. Due to advances in software and processor speed, these computations are often
completable on functions arising in applications. Christol [8] was the first to show that
diagonals of rational functions are D-finite.

The following relationship between D-finiteness of a univariate function and the existence
of a polynomial recursion satisfied by its coefficient sequence is the result of translating a
formal differential equation into a relation among the coefficients.

I Proposition 2. The series f(z) =
∑
n≥0 anz

n is D-finite if and only if it is polynomially
recursive, meaning that there is a k > 0 and there are polynomials p0, . . . , pk, not all zero,
such that for all but finitely many n,

k∑
i=0

pi(n)f(n+ i) = 0 .

Let f be a D-finite power series in one variable. If f has positive finite radius of convergence
and integer coefficients, then it is a so-called G-function and has well behaved asymptotics
according to following result.

I Proposition 3 (Asymptotics of G-Function Coefficients). Suppose f is D-finite with finite
radius of convergence and integer coefficients annihilated by a minimal order linear differential
operator L with polynomial coefficients. Then L has only regular singular points in the
Frobenius sense. Consequently, the coefficients {an} are given asymptotically by a formula

an ∼
∑
α

Cαn
βαρ−nα (logn)kα (6)
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where the sum is over quadruples (Cα, bα, ρα, kα) as α ranges over a finite set A with the
following properties. The base ρα is an algebraic number, a root of the leading polynomial
coefficient of L. The βα are rational and for each value of ρα can be determined as roots
of an explicit polynomial constructed from ρα and L. The log powers kα are nonnegative
integers, zero unless for fixed ρα there exist two values of βα differing by an integer (including
multiplicities in the construction of βα). The Cα are not in general closed form analytic
expressions, but may be determined rigorously to any desired accuracy.

Proof. The discussion in [18, page 37] gives references to several published results that
together establish this proposition; see also Flajolet and Sedgewick [9, Section VII. 9].
Determination of all rational and algebraic numbers other than Cα is known to be effective. J

Because there are computational methods for the study of diagonals, it is of interest to
reduce positivity questions to those involving only diagonals. For the Gillis-Reznick-Zeilberger
class Fc,d, such a result is conjectured.

I Conjecture 4 ([11]). For d ≥ 4, the following three statements are equivalent.
(i) c ≤ d!
(ii) The diagonal coefficients of Fc,d are nonnegative
(iii) All coefficients of Fc,d are nonnegative

To be precise, (iii)⇒ (ii)⇒ (i) is trivial (look at δ1); nonnegativity of all coefficients of
Fc,d holds for some interval c ∈ [0, cmax], therefore the conjecture comes down to nonnegativity
of Fd!,d. A proof for (ii)⇒ (iii) in the case c = d! is claimed in [11] but omitted from the
paper due to length. This question is generalized in [25] to all ofMd.

I Question 5 ([25, Question 1.1 and following]). For Q ∈ Md and F = 1/Q, under what
conditions does nonnegativity of the coefficients of diagF imply nonnegativity of all coefficients
of F?

More specifically, with nonnegativity in place of positivity, the authors of that paper
wonder whether positivity of F is equivalent to positivity of diagF together with positivity
of F (x1, . . . , xd−1, 0). They prove that this is true for d = 2 and, with additional evidence,
conjecture this to be true for d = 3 as well. Combined with [23, Conjecture 1] and [25,
Conjecture 3.3], we obtain the following explicit predictions on the diagonal coefficients.

I Conjecture 6. Let F = 1/Q where Q = 1− e1 + ae2 + be3, which is, up to rescaling, the
general element ofM3. Then diagF is nonnegative if and only if

b ≤


6(1− a) a ≤ a0

2− 3a+ 2(1− a)3/2 a0 ≤ a ≤ 1
−a3 a ≥ 1,

(7)

where a0 ≈ −1.81 is characterized by 6(1− a0) = 2− 3a0 + 2(1− a0)3/2.

1.3 Present results
In the present work we use ACSV to answer asymptotic versions of these questions. Aside
from computing special cases, the main new results are (1) simplification for diagonals with
symmetric denominators via the Grace-Walsh-Szegő Theorem (Lemma 15 below); (2) an
easy further simplification for the Gillis-Reznick-Zeilberger class (Lemma 18 below); and
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(3) a topological computation to explain the drop in magnitude of coefficients at critical
parameter values (Theorem 22 below).

The first special case we look at is the diagonal of the general element ofM3, corresponding
to Conjecture 6.

I Theorem 7. Let Q = 1− e1 + ae2 + be3, let F = 1/Q =
∑

r arzr and let δn = an,...,n be
the diagonal coefficients of F . Then δn is eventually positive when

b <


−9a a ≤ −3
2− 3a+ 2(1− a)3/2 −3 ≤ a ≤ 1
−a3 a ≥ 1

(8)

while, when the inequality is reversed, δn attains an infinite number of positive and negative
values.

Theorem 7 is obtained by examining asymptotic regimes, captured in the following result.

I Theorem 8. Let Q,F, and δn be as in Theorem 7. Assuming that b is not equal to the
piecewise function in Equation (8),

δn =
∑
x∈E

(
x−3n

n
·
∣∣∣∣1− 2ax− bx2

1− ax

∣∣∣∣ · 1
2
√

3(1− 2x+ ax2)

)(
1 +O

(
1
n

))
, (9)

where E consists of the minimal modulus roots of the polynomial Q(x, x, x) = 1− 3x+ 3ax2 +
bx3.

The situation for eventual positivity on the diagonal when equality holds in Equation (8) is
more delicate. When a < −3 it follows from seeing that there are two diagonal minimal points,
(r, r, r) and (−r,−r,−r), with a greater constant at the positive point. When −3 < a < 1, it
follows from a dominant positive real cone point. When a = −3 a quadratically degenerate
smooth point at (−1/3,−1/3,−1/3) may be shown via rigorous numerical diagonal extraction
to dominate the cone point at (1/3, 1/3, 1/3), leading to alternation. When a = 1, ar ≡ 1.
Finally, when a > 1, there are three smooth points on the unit circle, with nonnegativity
conjectured because the positive real point is degenerate and should dominate.

Our second set of results concern the diagonal of the general element of the GRZ rational
function Fc,d. Let

c∗ = c∗(d) := (d− 1)d−1 . (10)

The following corresponds to Conjecture 4.

I Theorem 9. Let d ≥ 4. Then the diagonal coefficients of Fc,d are eventually positive when
c < c∗ and contain an infinite number of positive and negative values when c > c∗. When
c < c∗, there is a conical neighborhood N of the diagonal such that ar > 0 for all but finitely
many r ∈ N .

Again, the result is obtained through an explicit asymptotic analysis.

I Theorem 10. Let δn be the diagonal coefficients of Fc,d. Then when c 6= c∗,

δn =
∑
x∈E

(
x−dn

n(d−1)/2 ·
(

2π(1− (d− 1)r)
r(d−1)/2

)(d−1)/2
· 1
d1/2(1− (d− 1)r)

)(
1 +O

(
1
n

))
,

where E consists of the minimal modulus roots of the polynomial 1/Fc,d(x, . . . , x) = 1− dx+
cxd.
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These theorems are proven in Section 4, using ACSV smooth point methods summarized
in Section 2, however the case c = c∗ for the GRZ rational function requires the more delicate
results of Section 5.

1.4 Exponential drop and further results
In the GRZ family, for even values of d ≥ 4 the exponential growth rate of the coefficients
drops at the special value c = (d− 1)d−1. This special value, and the corresponding drop
in exponential growth, may be identified for each fixed d from the differential equation
annihilating the diagonal. For example, when d = 4 an annihilating differential equation for
the diagonal of Fc,4 is computed by D-module integration in the Mathematica package of
Koutschan [16] producing the annihilating operator L, of order 3 and maximum coefficient
degree 8, such that LdiagFc,4 = 0:

L = z2(c4z4 + 4c3z3 + 6c2z2 + 4cz − 256z + 1)(3cz − 1)2∂3
z

+ 3z(3cz − 1)(6c5z5 + 15c4z4 + 8c3z3 − 6c2z2 − 384cz2 − 6cz + 384z − 1)∂2
z

+ (cz + 1)(63c5z5 − 3c4z4 − 66c3z3 + 18c2z2 + 720cz2 + 19cz − 816z + 1)∂z
+ 9c6z5 − 3c5z4 − 6c4z3 + 18c3z2 − 360c2z2 + 13c2z − 384cz + c− 24. (11)

When c = 27, all coefficients in (11) acquire enough zeros at z = 1/81 that the quantity
(81z−1)4 may be factored out of the entire operator, leaving the following operator of order 3
and maximum degree 4:

L27 :=z2(81z2 + 14z + 1) ∂3
z + 3z(162z2 + 21z + 1) ∂2

z

+ (21z + 1)(27z + 1)∂z + 3(27z + 1). (12)

Asymptotics for δn may be extracted via the methodology described in Proposition 3. In
the special case d = 4, c = 27, the recursion may be found on the OEIS (entry A125143) and
identifies {δn} as the Almkvist–Zudilin numbers5 from [1, sequence (4.12)( δ)]. The known
asymptotic formula implies that |δn|1/n → 9. However, as c 6= 27 approaches 27 from either
side, we have

lim
c→27

lim
n→∞

|δn|1/n = 81;

in other words, the growth rate at c = 27 drops suddenly from 81 to 9. The occurrence of
a phase change at (d− 1)d−1 for all d and drop in exponential rate for even d ≥ 4 had not
previously been proved. The special role of the case c = (d − 1)d−1 was observed in [25,
Example 4.4] and claimed to agree with intuition from hypergeometric functions. We verify
this, first by identifying the singularity from an ACSV point of view and then by checking
that this singularity indeed produces the observed dimension drop.

I Theorem 11 (exponential growth approaching criticality). For all d ≥ 2,

lim
c→c∗

lim sup
n→∞

|δn|1/(dn) = d− 1 .

I Theorem 12 (dimension drop at criticality). When c = c∗ and d ≥ 4 is even,

lim sup
n→∞

|δn|1/(dn) < d− 1 .

Theorem 12 is proved in Section 5.

5 That these are the diagonals of the rational function F27,4 was observed in [24], where it is further
conjectured that the coefficients of F27,4 satisfy very strong congruences.
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2 ACSV

In this section we describe the basic setup for ACSV and state some existing results.
Definitions for the topological and geometric quantities used below can be found in Pemantle
and Wilson [20]. Throughout this section let F (z) = P (z)/Q(z) =

∑
r arzr denote a

rational series in d variables, with P and Q co-prime polynomials. Assume that F has a
(finite) positive radius of convergence; that is, Q(0) 6= 0 and P/Q is not a polynomial. Let
V := {z ∈ Cd : Q(z) = 0} denote the singular variety for F and letM = (C∗)d \ V where
C∗ = C \ {0}. Coefficients ar are extracted via the multivariate Cauchy formula

ar = 1
(2πi)d

∫
T

z−rF (z)dz
z , (13)

where dz/z denotes the holomorphic logarithmic volume form (dz1/z1)∧· · ·∧ (dzd/zd) and T
denotes a small torus (a product of sufficiently small circles about the origin in each coordinate,
so that the product of the corresponding disks is disjoint from V). The fundamental insight
of ACSV is that the integral depends only on the homology class of T in Hd(M). Therefore,
one tries to replace T by some homologous chain C over which the integral is easier, typically
via some combination of residue reductions and saddle point estimates.

A direction of asymptotics is an element r̂ ∈ (RPd)+; that is, a projective vector in
the positive orthant. If r ∈ (Rd)+ we write r̂ to denote the representative r/|r| of the
projective equivalence class containing r, where |r| = |r|1 := r1 + · · ·+ rd. Given a Whitney
stratification of V into smooth manifolds, the critical set crit(r̂) for a direction r̂ is the set
of z ∈ V such that r̂ is orthogonal to the tangent space of the stratum of z in V. If z is a
smooth point of V and Q is square-free, this means r̂ should be parallel to the logarithmic
gradient (z1∂Q/∂z1, . . . , zd∂Q/∂zd). A minimal point for direction r̂ is a point z ∈ crit(r̂)
such that the open polydisk D(z) := {w : |wj | < |zj | ∀1 ≤ j ≤ d} does not intersect V. The
minimal point z is called strictly minimal if the closed polydisk D(z) intersects V only at z.

For any β ∈ Rd, let T(β) = {w : |wj | = exp(βj) ∀ 1 ≤ j ≤ d} denote the torus of
points with log modulus vector β. The amoeba of Q(z) is the image of V under the map
Relog(z) = (log |z1|, . . . , log |zd|), while the height of a point z is hr̂(z) = −r̂ · Relog(z).
Except in Section 5, all ACSV computations are based on the following result.

I Theorem 13 (smooth point formula). Fix F = P/Q =
∑

r arzr and vector r ∈ (Rd)+ in
direction r̂. Assume there exists β ∈ Rd such that the following two hypotheses hold.

1 Finite critical points on the torus. The set E := T(β) ∩ crit(r̂) is finite, nonempty
and contains only minimal smooth points.

2 Quadratic nondegeneracy. At each z ∈ E fix k = k(z) such ∂Q/∂zk(z) 6= 0 and let
zk = g(z1, . . . , ẑk, . . . , zd) be a smooth local parametrization of zk on V as a function of
{zj : j 6= k}. We assume that the Hessian determinant Hk(z) of second partial derivatives
of g

(
w1e

iθ1 , . . . , wde
iθd
)
with respect to the θj at the origin is non-zero for each z ∈ E.

Then there exists a closed neighborhood N of r̂ in (Rd)+ on which all the above hypotheses
hold and, for any r with r̂ in this neighborhood,

ar = (2π)(1−d)/2
∑
z∈E

detH−1/2
k(z)

P (z)
zk(∂Q/∂zk)(z)r

(1−d)/2
k z−r +O

(
r
−d/2
k z−r

)
. (14)

I Remark. A number of other formulae for ar are equivalent to this one and hold under the
same hypotheses. An explicit formula for Hk in terms of partial derivatives of Q is given
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in [18, Theorem 54]. The following coordinate-free formula for the constants involved in
terms of the complexified Gaussian curvature K at a smooth point z ∈ V is given in [20,
(9.5.2)] as

ar = (2π)(1−d)/2

[∑
z∈E
K(z)−1/2 |∇logQ(z)|−1P (z) |r|(1−d)/2 z−r

]
+O

(
|r|−d/2|z|−r

)
(15)

Proof. Assume first that log |w| is the unique minimizer of r · x on the boundary of the log
domain of convergence (this being a component of the complement of the amoeba). Under no
assumptions on E or K, Theorem 9.3.2 of [20] writes the multivariate Cauchy integral 13 as
the integral of a residue form ω over an intersection cycle, C. Taking into account that E is
finite, and assuming an extra hypothesis that r is a proper direction (see [5, Definition 2.3]),
Theorem 9.4.2 of [20] identifies C as a sum of quasi-local cycles near the points of E. For
each such z, if ∂Q/∂zk and detHk do not vanish, Theorem 9.2.7 of [20] identifies the integral
as the corresponding summand in (14). Nonvanishing of Hk is equivalent to nonvanishing of
K, leading to the coordinate-free formula (15), which may be found in [20, Theorem 9.3.7].
This proves the theorem under an extra hypothesis on the amoeba boundary.

To remove the properness hypothesis, consider the intersection cycle C obtained from
expanding the torus T(β − εr) inside the domain of convergence of F to a torus T(β + εr).
The construction in [20, Section A4] gives a compact (d− 1)-chain representing a relative
cycle in Hd−1(Vc+ε,Vc−ε); that is, a chain of maximum height c+ε with maximum boundary
height c − ε. Applying the downward gradient flow of hr̂ on V for arbitrarily small time,
we arrive again at a chain satisfying the conclusions of [20, Theorem 9.4.2]. Because the
deformed chain has nonvanishing boundary, one must add a term for the chain swept out by
the deformation applied to this boundary, but the elements of this chain have height at most
c− ε so the resulting integral will be within the error term above. J

I Corollary 14. Assume the hypotheses of Theorem 13, and fix a vector v in direction r̂.
(i) If E = {z} for some z in the positive real orthant in Cd and the leading constant of

Equation (14) is positive, then there exists a neighbourhood of r̂ such that all but finitely
many coefficients {ar : r̂ ∈ N} are positive.

(ii) If E = {z} for some z such that zv :=
∏d
j=1 z

vj
j is positive real and the leading constant

of Equation (14) is positive, then all but finitely many coefficients anv are positive.
(iii) If E does not contain a point z with zv positive real and the sum in Equation (14) is

not identically zero, then infinitely many coefficients anv are positive and infinitely
many anv are negative.

I Remark. When E contains a point in the positive real orthant but it is not a singleton,
the corollary does not provide information as to eventual positivity.

Proof. Conclusions (i) and (ii) follow immediately from (14) because the sum is a single
positive term.

For conclusion (iii), grouping the elements of E by conjugate pairs we note that up to
scaling by znvnd/2 the asymptotic leading term of anv has the form

ln =
|E|∑
i=1

ai cos(2πθin+ βi),

where each θi, ai, βi is real, and θi ∈ (0, 1). If rn is any sequence satisfying a linear recurrence
relation with constant coefficients, and rn = O(1/n), then Bell and Gerhold [6, Section 3]
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show that ln > rn infinitely often. Since the modulus of the error term in Equation (14) can
be bounded by a linear recurrence sequence with growth O(1/n), we see that anv is positive
infinitely often. Repeating the argument with −ln shows that anv is negative infinitely
often. J

Any computer algebra system can compute the set of smooth critical points in crit(r̂)
by solving the d− 1 equations (∇logQ)(z) ‖ r̂ together with the equation Q(z) = 0, where
∇logQ = (z1∂Q/∂z1, . . . , zd∂Q/∂zd). Identifying which points in crit are minimal is more
difficult, although still effective [19]. For our cases, we can use results about symmetric
functions to help with the computations. For any polynomial Q in d variables, let δQ denote
the codiagonal: the univariate polynomial defined by δQ(x) = Q(x, . . . , x).

I Lemma 15 (polynomials inMd have diagonal minimal points). Let F = 1/Q with Q ∈Md.
Let x be a zero of δQ of minimal modulus. Then x := (x, . . . , x) is a minimal point for F in
crit(1, . . . , 1).

This follows directly from the classical Grace-Walsh-Szegő Theorem, a modern proof of
which is contained in the following.

Proof. Let α1, . . . , αk be the roots of δQ, where k ≤ d is the common degree of Q and δQ
and |α1| is minimal among {|αj | : j ≤ k}. For any ε > 0, the polynomial

M(x) :=
k∏
j=1

(xj − αj)

has no zeros in the polydisk D centered at the origin whose radii are α1 − ε. The sym-
metrization of M (see [7]) is defined to be the multilinear symmetric function m such that
m(x, . . . , x) = M(x, . . . , x). In our case M(x, . . . , x) = δQ(x), and it immediately follows
that m = Q. By the Borcea-Brändén symmetrization lemma (see [7, Theorem 2.1]), the
polynomial Q has no zeros in the polydisk D. We conclude that the zero x of Q is a minimal
point of F . J

3 Symmetric multilinear functions of three variables

In this section we determine the diagonal asymptotics for general Q = 1−e1 +ae2 +be3 ∈M3.
Taking the coefficient of e1 to be 1 loses no generality because of the rescaling xj → λxj
which preserves Md and affects coefficient asymptotics in a trivial way. In order to use
Theorem 13, we begin by identifying minimal points. Lemma 15 dictates that our search
should be on the diagonal.

To that end, let δQ(x) = Q(x, x, x) = 1− 3x+ 3ax2 + bx3. The discriminant of δQ is a
positive real multiple of p(a, b) := 4a3 − 3a2 + 6ab+ b2 − 4b = (a− 1 + 3(b− 1))2 − 4(b− 1)3,
and the zero set of δQ is obtained from that of the cubic 4b3 = −a2 by centering at (1,−1)
and shearing via (a, b) 7→ (a+ 3b, b). The discriminant p(a, b) vanishes along the red curve
(solid and dashed) in Figure 1. Let r1(a) and r2(a) denote respectively the upper and lower
branches of the solution to p(a, b) = 0.

I Lemma 16. Let p be a minimal modulus root of δQ. Then any critical point of 1/Q on
the torus T (p, p, p) has the form (q, q, q) where δQ(q) = 0.

Proof. Gröbner basis computations show nondiagonal critical points to be permutations of(
1
a ,

1
a ,

a(1−a)
a2+b

)
, occurring when b = a2(a− 2). When a ≤ 1, the only time the positive root
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Figure 1 The three regimes defined by Proposition 17, made up of the curves b = −9a, p(a, b) = 0,
and b = −a3. Dashed lines represent the curves where they do not determine positivity of coefficients;
note smoothness in the transitions between regimes.

of δQ(x) has modulus 1/|a| is the trivial case (a, b) = (1,−1). When b = a2(a− 2) and a > 1,
the modulus of the product of the roots of δQ(x) equals 1

a2(a−2) and the minimal roots of
δQ(x) are a pair of complex conjugates. If this pair has modulus 1/a, then the real root of
δQ(x) is ± 1

a4(a−2) , but δ
Q
(
± 1
a4(a−2)

)
6= 0 for a > 1. J

Determining asymptotics is thus a matter of determining the minimal modulus roots
of δQ(x). The following may be proved by comparing moduli of roots, separating cases
according to the sign of p(a, b).

I Proposition 17. The function δQ has a minimal positive real zero if and only if

b ≤


−9a a ≤ −3
r1(a) −3 ≤ a ≤ 1
−a3 a ≥ 1

This corresponds to the set of points lying on and below the solid curve in Figure 1.

Proof of Theorems 7 and 8: Suppose b is greater than the piecewise expression in the
proposition; then δQ has no minimal positive zero, so the product of the three coordinates
of the minimal points determined above do not lie in the positive orthant. By part (iii) of
Corollary 14, the diagonal coefficients are not eventually positive. Asymptotics of δn are
determined by Theorem 13, and when b is less than the piecewise expression it can be verified
that the dominant term is positive. J

4 The Gillis-Reznick-Zeilberger classes

Throughout this section, let F = Fc,d = 1/Qc,d = 1/(1 − e1 + ced) and recall that c∗ =
(d − 1)d−1. Lemma 15 implies that for Q ∈ Md, in the diagonal direction, one may find
diagonal minimal points. For Fc,d, things are even simpler: all critical points for diagonal
asymptotics are diagonal points.

I Lemma 18. Let Fc,d = 1/Qc,d. If z ∈ crit(1, . . . , 1) then zi = zj for all 1 ≤ i, j ≤ d.
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Proof. From Q = Qc,d = 1 − e1 + ced we see that (∇logQ)j = −zj − ced and hence that
(∇logQ)i = (∇logQ)j if and only if zi = zj . J

I Proposition 19 (Smoothness of Fc,d for c 6= c∗). Let Fc,d = 1/Qc,d. If c 6= c∗ then V is
smooth. If c = c∗ then V fails to be smooth at the single point z∗ = (1/(d− 1), . . . , 1/(d− 1)).
When c = c∗, the singularity at z∗ has tangent cone e2.

Proof. Checking smoothness of V we observe that for d fixed and c and x1, . . . , xd variable,
vanishing of the gradient of Qc,d with respect to the x variables implies xj = ced for all j.
This common value, x, cannot be zero, hence xj ≡ x and c = x1−d. Vanishing of Qc,d then
implies vanishing of 1− dx+ x, hence x = 1/(d− 1) and c = c∗. This proves the first two
statements. Setting c = c∗ and xj = 1/(d − 1) + yj centers Qc∗,d at the singularity and
produces a leading term of (d− 1)e2(y), proving the third statement. J

4.1 Proof of Theorems 9 and 10 in the case c < c∗

When c ≤ 0, the denominator of Fc,d is one minus the sum of positive monomials, which
leaves no doubt as to positivity. Assume, therefore, that 0 < c < c∗. Apply Lemma 15 to
see that if x is a minimum modulus zero of δQ := Qc,d(x, . . . , x) then (x, . . . , x) is a minimal
point for Fc,d in the diagonal direction. Apply Lemma 18 to conclude that the set E in
Theorem 13 of minimal critical points on T(|x|, . . . , |x|) consists only of points (y, . . . , y) such
that y is a root of δQ. By part (i) of Corollary 14, it suffices to check that δQ = 1− dx+ cxd

has a unique minimal modulus root ρ and that ρ ∈ R+. Thus, the conclusion follows from
the following proposition.

I Proposition 20. For c ∈ (0, c∗), the polynomial δQ = 1− dx+ cxd has a root ρ ∈
[

1
d ,

1
d−1

]
which is the unique root of δQ of modulus less than 1/(d− 1).

Proof. Checking signs we find that δQ(1/d) = cd−d > 0 while δQ(1/(d− 1)) = −(d− 1)−1 +
c(d− 1)−d < −(d− 1)−1 + c∗(d− 1)−d = 0, therefore there is at least one root, call it ρ, of
δQ in the interval [1/d, 1/(d − 1)]. On the other hand, when |z| = 1/(d − 1), we see that
|dz| ≥ |1+czd| and therefore, by applying Rouché’s theorem to the functions −dz and 1+czd,
we see that δQ has as many zeros on |z| < 1/(d− 1) as does −dz: precisely one root, ρ. J

4.2 Proof of Theorems 9 and 10 in the case c > c∗

Again, by Lemmas 15 and 18, we may apply part (iii) of Corollary 14 to the set E of points
(y, . . . , y) for all minimal modulus roots y of δQ. The result then reduces to the following
proposition.

I Proposition 21. For c > c∗, the set of minimal modulus roots of the polynomial δQ =
1− dx+ cxd contains no point whose dth power is real and positive.

Proof. First, if zd is real then the imaginary part of δQ(z) is equal to the imaginary part of
−dz, hence any root z of δQ with zd real is itself real.

Next we check that δQ has no positive real roots. Differentiating δQ(x) with respect to x
gives the increasing function d(−1 + cxd−1) with a unique zero at c−1/(d−1). This gives the
location of the minimum of δQ on R+, where the function value is 1−dc−1/(d−1)+c1−d/(d−1) =
1− (d− 1)/c1/(d−1) which is positive because c > (d− 1)d−1.

If d is even, δQ clearly has no negative real roots, hence no real roots at all, finishing the
proof in this case. If d is odd δQ will have a negative real root u, however because d is odd,
the product of the coordinates of (u, . . . , u) is ud < 0. J
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We conjecture that the roots of minimal modulus when c > c∗ are always a complex
conjugate pair, however this determination does not affect our positivity results.

4.3 Proof of Theorem 11

When c < c∗ we have seen that there is a single real minimal point (ρc, . . . , ρc) in the diagonal
direction and that ρc ↑ 1/(d− 1) as c ↑ c−∗ . The limit from below in Theorem 11 then follows
directly from Theorem 10.

For the limit from above, it suffices to show that in the diagonal direction, for c sufficiently
close to c∗ and greater, E consists of a single diagonal complex conjugate pair (ζc, . . . , ζc)
and (ζc, . . . , ζc), and that ζc → 1/(d− 1) as c∗ ↓ c. First, we check that at c = c∗ the unique
minimum modulus root of δQ is the doubled root at 1/(d− 1). For c = c∗, the first and third
terms of δQ = 1− dz+ c∗z

d have modulus 1 and 1/(d− 1) when |z| = 1/(d− 1), respectively,
summing to the modulus of the middle term; therefore if δQ(z) = 0 and |z| = 1/(d− 1) then
the third term is positive real. But then the second term must be positive real too, hence the
unique solution of modulus at most 1/(d− 1) is z = 1/(d− 1). A quick computation shows
the multiplicity to be precisely 2. We know that for c > c∗ there are no real roots. Therefore,
as c increases from c∗, the minimum modulus doubled root splits into two conjugate roots,
which, in a neighborhood of c∗, are still the only minimum modulus roots.

5 Lacuna computations

Theorem 22 is the subject of forthcoming work [4]. Theorem 12 follows immediately, with
the specifications: d ≥ 4 and even, c = c∗, k = 1, P = 1, Q = Qc,d, z∗ = (1/d, . . . , 1/d),
r̂ = (1, . . . , 1), B is the component of the complement of the amoeba of Q containing
(a, . . . , a) for a < − log d, x∗ = (− log d, . . . ,− log d), y∗ = 0 and N taken to be the diagonal.
Proposition 19 guarantees the correct shape for the tangent cone to Q at z∗.

I Theorem 22. Suppose F = P/Qk with P a holomorphic function and Q a real Laurent
polynomial. Fix r̂ ∈ RPd, let B be a component of the complement of the amoeba of Q, let∑

r arzr be the Laurent expansion for F convergent for z = exp(x + iy) and x ∈ B. Let
x∗ ∈ ∂B be a maximizing point for r · x on ∂B. Assume that V has a unique singularity
z∗ = exp(x∗ + iy∗), and that the tangent cone of Q at z transforms by a real linear map to
z2
d −

∑d−1
j=1 z

2
j . Let N be any closed cone such that x∗ maximizes r · x for all r ∈ N .

If d > 2k is even then there is an ε > 0 and a chain Γ contained in the set Vε := {z ∈ V :
|z−r| ≤ exp(−r · x∗ − ε|r|) such that

ar =
∫

Γ
z−r P

Qk
dz
z . (16)

In other words, the chain of integration can be slipped below the height of the singular point.

Sketch of proof: Expand the torus T of integration to z∗ and just beyond. The integral (13)
turns into a residue integral over an intersection cycle swept out by the expanding torus; see,
e.g. [20, Appendix A.4]. For small perturbations Qε of Q, the residue cycle is the union of a
sphere surrounding z∗ and a hyperboloid intersecting the sphere. As Qε → Q, this cycle may
be deformed so that the sphere shrinks to a point while the hyperboloid’s neck also constricts
to a point. The hyperboloid may then be folded back on itself so that in a neighborhood of
z∗, the chain vanishes, leaving a chain Γ supported below the height of z∗. J
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A Appendix A: Maple Code

Maple worksheets going through the calculations discussed above can be found at https:
//github.com/smelczer/SymmetricRationalFunctionsAofA ; we include the main com-
ponent of those worksheets, code giving dominant smooth asymptotics, here for archival
purposes.

smoothASM := proc(G,H, vars,pt)
local N, i, j,M,HES, C, U, lambda, sbs:
N := nops(vars) :

# Get the Hessian determinant of the phase implicitly
for i from 1 to N do for j from 1 to N do

U [i, j] := vars[i] · vars[j] · diff(Q, vars[i], vars[j]) :
od: od:
lambda := x · diff(Q, x) :
for i from 1 to N − 1 do for j from 1 to N − 1 do

if i <> j then M [i, j] := 1 + 1/lambda · (U [i, j]− U [i,N ]− U [j,N ] + U [N,N ]) :
else M [i, j] := 2 + 1/lambda · (U [i, i]− 2 · U [i,N ] + U [N,N ]) :

fi:
od: od:
HES := LinearAlgebra[Determinant](Matrix([seq([seq(M [i, j], i = 1..N − 1)], j = 1..N − 1)])) :

C := simplify(−G/vars[−1]/diff(H, vars[−1]) ·HESˆ(−1/2) · (2 · Pi)ˆ((1−N)/2));
sbs := seq(vars[j] = pt[j], j = 1..N) :
return eval(1/mul(j, j = pt))ˆn · nˆ((1−N)/2) · eval(subs(sbs, C)) :

end:
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