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Abstract
We will be concerned with Ramanujan’s 7 function defined by
ALqf(@)* 2q ] A=gm*=)" r(n) g™
n>1 n>1
The Ramanujan numbers 7(n) appear as sequence A000594 in
[Sloane, 2007]. Their first few values are
1,—24,252, — 1472,4830, — 6048, — 16744, 84480, — 113643.
We'll have a special interest in congruences for 7(n). One of the his-
torical motivations for such congruences has been the hope to establish
Lehmer’s conjecture, namely that 7(n) # 0 for all n, based on congru-
ence considerations.
On our way, we will have to make use of some machinery involving
modular forms. The basic theory we need will be briefly sketched.
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1 A First Class of Simple Congruences

Our first class of congruences which are due to Ramanujan, see [Berndt and Ono, 1999], will
stem from the following simple observation.

Lemma 1. For any prime p,

(a+b)P=aP+bP (modp).

This gives us for example,

g =g = ¢[] O=¢?*[] 1=¢™)?® (mod?).

n>1 n>1 n>1
In more compact form this reads as
¢0(0)* = ¢0(q)*0(¢")° (mod?).
We'll now examine the right-hand side more closely to find congruences of the type
T(Tn+a)=0 (modT).

To establish such a result we check if the coefficient of ¢""*% in ¢ (q)® is a multiple of 7. The
same line of reasoning works for any prime less than 24 but the details and final results vary a
lot.

Modulus 7. As mentioned before we have

q0(¢)*" = ¢6(q)*0(¢")?* (mod7),

and we are interested in the coefficient of ¢""*® in ¢ 6(q)3. To this end, note that by Jacobi’s
identity

q0(¢)*=q Z (—1)"(2n+1) g tH/2,

n>=0
So the only exponents appearing here are of the form

n(n+1)
2

+1=0,1,2,4 (mod7).
Further, 2n + 1 is a multiple of 7 if n=3 in which case the exponent is of the form 7n. Thus,
7(7n), 7(tn+3), 7(Tn+5), 7(Tn+6)=0 (mod7).

3,5,6 are the quadratic non-residues.

Modulus 23. Here

q0(¢)*" = q0(q)0(¢**) (mod23),

and we make use of the pentagonal number theorem

g0(q) =g (—1)ngrerth/,
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The exponents are of the form

n(3n+1)

5 +1=0,1,2,3,4,6,89,12,13,16,18 (mod23),

which gives us congruences for the omitted ones, namely

7(23n+a)=0 (mod23) for a=5,7,10,11,14,15,17,19,20, 21, 22.

The «’s are the quadratic non-residues.
Modulus 2. Again,
g0(a)*" = ¢0(¢®))* (mod2),
so we immediately see that
7(8n+a)=0 (mod2) for a=*1modS8.
In particular,
7(2n)=0 (mod2).

In fact, more can be said by using Jacobi’s identity as for the modulus 7,

qﬂ(qS)S =g Z ( _ 1)n (QTL + 1)q4n(n+1) _ Z ( _ 1)n (2n+ 1)q(2”+1)2.

n>0 n>0
This shows that
7(n)=1 (mod2) <= nisan odd square.

Modulus 3. Here,
q0(a)*" = q0(¢*)® (mod3).
and we see that only exponents of the form 3n + 1 will appear. So

7(3n), 7(3n+2)=0 (mod 3).

2 A Glance at the Theory of Modular Forms

2.1 Basics About Modular Forms

The group
SL(2,R)={AcR**?% det A=1}

acts on the upper half plane H ={w € C: imw >0} via

ab _w_aw—l—b
c d T cw+d

Let’s consider the discrete subgroup SL(2, Z) made up of such matrices with integer entries.

This group is generated by the two elements
11 1
() ()
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Definition 2. A function f:H— C is called a modular form of weight k if

f(jjjfl)=(cw+d)kf(w),

and f is analytic at oo.

We only have to check
flotl)=flw), f(-1/w)=w"f(w).

The fact that a modular form f is periodic with period 1 and analytic at oo implies that it has
an expansion in g = e?>™“ convergent for all |¢| <1,

f(Q) = Z anq".

n>0

Note that modular forms of odd weight have to be zero. However, the concept of odd weight
will make more sense when considering subgroups of SL(2,Z) instead of the full group.

Definition 3. A modular form f is called a cusp form if it vanishes at oo, that is the Fourier
coefficient ag=0.

The simplest examples of modular forms are given by the Eisenstein series

1
(m+nw)k’

Gr(w) =
(m,m)£0

which converge absolutely when k > 2. Note that terms are cancelling for £ odd so that we con-

stantly end up with 0. It is easy to see that Gy for £ >1 is indeed a modular form of weight 2k.
Since

Gak(o0) = > #: 2((2k),

m=£0

we often consider the normalized Eisenstein series

P= 5y

Definition 4. Let’s introduce the sum of divisors functions

ak(n) 2 Z dk.

d|n

The functions oy, are multiplicative and hence determined by

for primes p.

Lemma 5. We have
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where By, are the Bernoulli numbers defined by

Note that by reordering,

(]
=
S
Q§
[

Z deqn

n>1 n>1 din

= 3 dF (g4 g2+ g
d>1

k4"
Yo

n>1

This provides the so called Lambert series for Ej, namely

2.2 Spaces of Modular Forms
Definition 6. Let M,, denote the space of all modular forms of weight 2n.

The following fundamental lemma, see [McKean and Moll, 1999], is crucial for describing the
spaces M,,.

Lemma 7. Let f be a modular form of weight 2n, f 0. Denote with m,, m;, M« the multiplic-
ities with which f vanishes at p,i,00, and let m be the sum of multiplicities of all the other roots
in the fundamental cell. Then

1 1 1
gmp—i-ﬁmi—i—moo—i—m:gn.

Corollary 8. M,, is a finite dimensional linear space, spanned by the independent forms
E$E%  2a+3b=n.

In particular,

dim M. = L%J n=1 (mod 6)
" | 5] +1 otherwise.

2.3 Explicit Examples

For illustration and future use, we give some explicit examples.

My = C
M, = {0}

My = CEy

M; = CEy

M, = CE}

My = CEyE;
Ms = CE3@CA
M; = CE3E;

Mg = CE;30CA
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Also recall that

4k .,
Ekzl—B—kZ U?k—l(n) q,

n>1

and let’s use this to write down the first terms of the Fourier expansions

B, = 1—242 oi(n) ¢* = 1—24q—T72¢*>—96¢> —168¢"* — ...
E, = 1+240n§1: o3(n) " = 1+4240q+2160¢%+ 67204 + ...

E; = 1—504n§:1 os5(n) ¢" = 1-504q—16632¢>—122976¢° — ...
E, = 1+480§07(n) " = 1+480q+61920¢%+ 1050240¢> + ...
Es = 1726475 oo(n) ¢" = 1—264¢—135432¢> —5196576¢> — ...

n>1
A = Z:—En) q" = q—24¢>+252¢% — 1472¢* + ...
n>1

Remark 9. In the sequel we will consider congruences mod p for the numbers 7(n) by estab-
lishing relationships between the Eisenstein series E, and Ramanujan’s A. It seems that the fol-
lowing is true

2m=2n (modp—-1) = E,=E, (modp),
where we also allow m, n = 0 with the convention that Fy = 1. In each individual case this is

easily verified but I didn’t find a proof or a reference for the general case. Note that the state-
ment above really comes down to divisibility properties of the Bernoulli numbers.

2.4 Differentiating Modular Forms

When introducing the Eisenstein series

1 1
B =3om 2 Tmina)®

we started with the assumption that &£ > 2 in order for the defining sums to converge. But after
rewriting the sums in terms of o9;_1 or as Lambert series our hopes are raised to also find that
E; has some modular properties. As it turns out, see [Beukers, 2007], the function F; defined by

Ei=1-24Y oi(n)q"=1-24) ng”

1—qm
n>1 n>1

is indeed close to being modular of weight 2 (recall that such a form cannot exist). While E4
does not satisfy Ei(—1/z) =22 E(z) it does satisfy
Ei(—1/2)=2%E(2) —I—Ez
2mi
E; still plays an important role, for instance when it comes to differentiating modular forms. As
before ¢ =e2™%, Since

dz 1
dg 2miq’
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we have

a,df 1 df
0r= dq omi dz”

The following lemma is due to Ramanujan, see [Serre, 1971].
Lemma 10. If f is a modular form of weight k then
k
0f —mEf
is a modular form of weight k + 2.

Remark 11. Ramanujan also discovered, see [Beukers, 2007], that the pseudoform FE; of weight
2 when treated the same behaves similar.

2 1 )
gEl 12E1 2(E2+E1)7
that is
1
0 B =15 (Bt - Fa). (2)

To put it in a fancy way, the ring C[E}, Ea, E3] is closed under differentiation. Recall that the
ring of modular forms is just C[E5, Es).

Note that the above identity is equivalent to the mysteriously looking

crl(n) 767L0’1(n) 71201*01(n)+503(n):0.

Remark 12. The pseudoform Fj is the logarithmic derivative of

A2q ] =g

n>1
meaning that
1 d
6 (logA) = de—(logA)
= ZLmdi 27mz—|—24z log(1 —¢™)
n=1

YD P
n>1 1_qn

= Ei(2)

Together with the transformation rule for E; this can be employed, see [Serre, 1971], to easily
prove that A as defined above is a modular form of weight 12.

2.5 Hecke Operators

Hecke introduced certain commuting operators T,: My — M, on the spaces of modular forms.
The T;, map cusp forms to cusp forms, and whenever a cusp form is a simultanuous eigenform
for these operators this implies nice properties like an Euler product expansion. Since A is the
only cusp form of weight 12 it is automatically an eigenform and the general theory provides the
following properties.

T(mn)=7(m)7(n) if ged(m,n)=1,

(Pt =7(p) r(p™) —p't 7(p"~1) if p prime.
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It is remarkable that this and more was conjectured by Ramanujan long before the general
theory. These properties are also captured in the following Euler product expansion for the
Dirichlet series attached to 7(n), namely

L=Y T _T]1+

n>1

(") _ 1
,; pns ];[ 177-(p)p—5+p11—23'
Example 13. The above multiplicative features of 7(n) show that
7(p)=0 (modp) = 7(np)=0 (modp).
With this insight it follows for instance immediately from 7(3) =252 that
7(3n)=0 (mod 3)

as we showed before, see (1). There are, however, only a handful known primes p dividing 7(p).
In (5) we list the first few such primes as 2,3,5,7,2411.

Example 14. The multiplicative properties further imply that
T(np)=7(n)7(p) (modp).
For instance 7(23) =1 (mod 23), and hence

7(23n)=7(n) (mod23).

Remark 15. Ramanujan also conjectured the following bound

m(p)<2p" /2,
which was finally proved in 1973 based on a proof of the Weil conjectures by Deligne (he worked
on the Riemann hypothesis for varieties over finite fields, and was awarded the Fields medal for

this work). As of 2005, the above inequality held the world record for the ratio length of
proof/length of the statement, see [Dalawat, 2006]. In general,

m(n)] < oo(n) /2=l 1/24),

3 Computing 7(n)

3.1 Exact Formulas
Let’s derive some formulas for A. We will employ the following short-hand notation
pr )2 3 o(m) b(n—m).
m=0
Throughout, we will make heavy use of the explicit presentations given in section 2.3.
Using E3, E2. We want to write

A=aE3+ BF3.
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Equating coefficients of the first two terms in the g-expansions yields

0 = a+p,
1 = 3-2400—2-5043.

Thus
1728 A=FE3 — E2,
and

T(n):15—203( )+ 100 03 % o3(n) 4 8000 03 * 03 % o3(n )—I—%%( ) — 147 o5 % o5(n).

Using E2, Eg. Now, lets find o, 8 such that

A=aE}+ B FEs.

This requires

0 = a+ts,

65520

I = —2:50da+ ==0.

Hence
762048 A = — 691 E2 + 691 Fg,
or
691 691 65

Using FEg,0FE5. From lemma 10 we know that

5 5
Fs——FE Es=——--—24
0Es 5 F1Es 6 q+

is a modular form of weight 12.

A—aEﬁ+5(0E5%E1E5>

yields to
5
"

We conclude that
228096 A = 3455 Eg + 4146 OEs — 3455 E Es,

and

2275 691 3455 3455 3455
7(n) = J5gq 711 (M) ~ g M o0(n) + gagg o1(n) + g oe(n) — T35~

o1 % og(n). (4)

Among what we found, (4.1.3) is probably the most useful formula for actually computing 7(n).
Expanded it reads as

65 691 691 —
T(n):%Uu( ) 756 *T Z CT5 0'5 n— m)
=1
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3.2 Recurrences
Using lemma 10 we find that
0A—E;A=0,

since there is no nonzero cusp form of weight 14. Thus

(n—1)7(n)=—2401x7(n)=—24 X_: 7(m) o1(n —m),

which is a recursion for 7(n).

As a nice by-product, we also find that

n=0,2 (mod6) = 7(n)=0 (mod?24).

4 Congruences for 7(n)

The results in this section are mostly in the spirit of Ramanujan, see [Berndt and Ono, 1999].
For more congruences and a glimpse at a general theory behind these congruences we refer the
reader to [Swinnerton-Dyer, 1988].

Modulus 5. Note that
E;=1, Es=E; (mod5).

Thus with (2),

1728A=E3 ~ E3=Fy,— FE}=—120E; (mod5),
or

7(n)=noi(n) (mod5).
Note that this also follows immediately from (4).
Modulus 25. Using again Es =1 (mod5) and E3= F; (mod5), we get
1728A = FE3—FE?
= 2(E3—FE 1 E3)— (Ba— FE}) + Ey (By—1)? — (B3 — Ey)?

2(E3 — E1E3) — (Ex— E})  (mod 25)
= _40F5+120F,

which together means
7(n)=4noi(n) —3nos(n) (mod 25).
The polynomial
2?(xt—1)? =z (2% — 225 + )
vanishes for all moduli with respect to 25, which implies that
nog(n) —2nos(n) +noi(n)=0 (mod25).
Together with the obvious o5(n) =01(n) (mod5) this simplifies our congruence to

T(n)=nog(n) (mod25).
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Modulus 5%. Ramanujan conjectured, see [Berndt and Ono, 1999], that for any k it is possible
to find a, b such that if n is not a multiple of 5

7(n)=n%op(n) (mod5*).
He offers for example

41

7(n)=n*" o99(n) (mod125)

whenever n is not a multiple of 5. While the latter is indeed true, the conjecture is false for k >
4. To see this take n =443, which is prime, and verify that for any a, b

7(443) = 328369848718692 = 567 £ 443" (1 +443")  (mod 54)

since 4432 = — 1 (mod 5*%). It’s comforting to know that even a genius like Ramanujan can err.
Modulus 7. Clearly,
F3=1, F3=F,=E; (mod7).
Therefore lemma 10 gives,
1728A=E3 - FE3=FE|Ey— E3=360E; (mod7),

that is

T(n)=noz(n) (mod7).
Modulus 691. It follows right from the exact formula (3),

691 691 65
T(n) :ﬁas(n) - TO’S*O’S(”) +ﬁ011(n),

that

7(n)=oy1(n) (mod691).

5 Negative Results

As presented in [Serre, 1997], congruences such as we showed for modulus 3, see (1),
m=2 (mod3) = 7(m)=0 (mod3),

don’t necessarily exist. In fact, for instance no congruence of the form

m=a (modd) = 71(m)=c (modll)

can exist for any integers a, b, ¢ such that a, b are relatively prime.

6 Almost Always Divisibility
Ramanujan asserted, see [Rankin, 1988], that for
p=3,5,7,23,691,

7(n) is almost always divisible by p in the sense that

Z 1=o(z).

n<z,pir(n)
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In fact, he claims that for almost all n
7(n)=0 (mod2°-33.52.7%2.23.691),

which he contrasts to the fact that n =1381 is the first such that 7(n) =0 (mod 691).

Today it is known that for any integer m, 7(n) is almost always divisible by m. But the proof of
this fact requires different methods than Ramanujan used to show his assertions.

7 Open Problems

Does 7(n) ever vanish, that is 7(n) = 0 for some n? This is known as Lehmer’s conjecture and
has been empirically verified for large values of n. As initially stated, one hoped that Lehmer’s
conjecture might be attackable by congruence considerations. To illustrate this hope, consider
just the congruence

T(n)=o11(n) (mod691).
Rewritten as
T(p)=1+p'" (mod691)
it shows that
7(p)=0 = p=-1 (mod691),
because Zggo contains no elements of order 22. The first candidates are thus

p=1381,5527, 8291, 12437, 22111, 29021, 30403, ...

Combining this with other congruences one is able to quite impressively narrow the density of
these candidates, see [Serre, 1997]. Let’s just consider the other congruences we found, namely

= p(1+p% (mod25)
m(p) = p(1+p®) (mod7).

B
—~
=
~—

1l

Then

ro)=0 — {7 fmels 0L,

—1
—1,3,5 (mod?7)
which leaves us with the candidates
p= 863749, 1381999, 1589299, 1692949, 2314849, 2833099, ...
The only primes p known for which
7(p)=1  (mod p)

are p = 11, 23, 691. It is an open problem, see [Sloane, 2007|, to decide whether there are more
such primes or even infinitely many. None are known up to 314747.

The following results have been verified for all primes < 16091.

7(p)=0 (modp) = p=2,3,5,7,2411,... (5)
7(p)=1 (modp) = p=11,23,691,...
T(p)=-1 (modp) = p=0>5807,...
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Is 7(n) ever a prime? The first number such that this is the case is
7(63001) =7(2512) =7(251)% — 251'" = — 80561663527802406257321747,

as found in |[Lehmer, 1965].
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