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Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 31 A First Class of Simple CongruencesOur �rst class of congruences which are due to Ramanujan, see [Berndt and Ono, 1 999] , willstem from the following simple observation.Lemma 1 . For any prime p, ( a + b) p� ap+ bp (mod p) :This gives us for example,q Yn> 1 ( 1 � qn) 2 4 � q Yn> 1 ( 1 � qn) 3 Yn> 1 ( 1 � q7n) 3 (mod 7) :In more compact form this reads asq � ( q) 2 4 � q � ( q) 3 � ( q7 ) 3 (mod 7) :We' ll now examine the right-hand side more closely to �nd congruences of the type�( 7n + �) � 0 (mod 7) :To establish such a result we check if the coe�cient of q7n+ � in q � ( q) 3 is a multiple of 7 . Thesame line of reasoning works for any prime less than 24 but the details and �nal results vary alot.Modulus 7 . As mentioned before we haveq � ( q) 2 4 � q � ( q) 3 � ( q7 ) 3 (mod 7) ;and we are interested in the coe�cient of q7n+ � in q � ( q) 3 . To this end, note that by Jacobi' sidentity q � ( q) 3 = q Xn> 0 ( � 1 ) n ( 2n + 1 ) qn (n+ 1 ) / 2 :So the only exponents appearing here are of the formn (n + 1 )2 + 1 � 0 ; 1 ; 2 ; 4 (mod 7) :Further, 2n + 1 is a multiple of 7 if n � 3 in which case the exponent is of the form 7n . Thus,�( 7n) ; �( 7n + 3) ; �( 7n + 5) ; �( 7n + 6) � 0 (mod 7) :3 ; 5 ; 6 are the quadratic non-residues.Modulus 23. Here q � ( q) 2 4 � q � ( q ) � ( q2 3 ) (mod 23) ;and we make use of the pentagonal number theoremq � ( q) = qXn ( � 1 ) n qn ( 3n+ 1 ) / 2 :
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The exponents are of the formn ( 3n � 1 )2 + 1 � 0 ; 1 ; 2 ; 3 ; 4; 6 ; 8 ; 9 ; 1 2 ; 1 3 ; 1 6 ; 1 8 (mod 23) ;which gives us congruences for the omitted ones, namely�( 23n + �) � 0 (mod 23) for � = 5 ; 7 ; 1 0 ; 1 1 ; 1 4 ; 1 5 ; 1 7 ; 1 9 ; 20 ; 21 ; 22 :The � ' s are the quadratic non-residues.Modulus 2 . Again, q � ( q) 2 4 � q � ( q ( 2 3 ) ) 3 (mod 2) ;so we immediately see that �( 8n + �) � 0 (mod 2) for � 
 1 mod 8 :In particular, �( 2n) � 0 (mod 2) :In fact, more can be said by using Jacobi' s identity as for the modulus 7 ,q � ( q8) 3 = q Xn> 0 ( � 1 ) n ( 2n + 1 ) q4n( n+ 1 ) = Xn> 0 ( � 1 ) n ( 2n + 1 ) q ( 2n+ 1 ) 2 :This shows that �(n) � 1 (mod 2) � n is an odd square :Modulus 3 . Here, q � ( q) 2 4 � q � ( q3 ) 8 (mod 3) ;and we see that only exponents of the form 3n + 1 will appear. So�( 3n) ; �( 3n + 2) � 0 (mod 3) : ( 1 )2 A Glance at the Theory of Modular Forms2. 1 Basics About Modular FormsThe group SL( 2 ; R) = � A 2 R2 � 2 : det A = 1 	acts on the upper half plane H = f! 2 C : im ! > 0g via� a bc d � � ! = a ! + bc ! + d :Let' s consider the discrete subgroup SL( 2 ; Z ) made up of such matrices with integer entries.This group is generated by the two elementsT = � 1 11 � ; S = � 1� 1 � :

Ramanujan' s Tau Function With a Focus on Congruences

Armin Straubmath@arminstraub. com 3/1 3



De�nition 2. A function f : H! C is cal led a modular form ofweight k iff� a ! + bc ! + d � = ( c ! + d) k f (!) ;and f is analytic at 1 .We only have to check f (! + 1 ) = f (!) ; f ( � 1 /!) = !k f (!) :The fact that a modular form f is periodic with period 1 and analytic at 1 implies that it hasan expansion in q = e2�i! convergent for all j q j < 1 ,f ( q) = Xn> 0 an qn :Note that modular forms of odd weight have to be zero. However, the concept of odd weightwill make more sense when considering subgroups of SL( 2 ; Z ) instead of the full group.De�nition 3. A modular form f is called a cusp form if it vanishes at 1 , that is the Fouriercoe�cient a0 = 0 .The simplest examples of modular forms are given by the Eisenstein seriesGk (!) = X(m; n) � 0 1(m + n !) k ;which converge absolutely when k > 2 . Note that terms are cancelling for k odd so that we con-stantly end up with 0 . It is easy to see that G2k for k > 1 is indeed a modular form of weight 2k .S ince G2 k (1 ) = Xm� 0 1m2k = 2 �( 2k ) ;we often consider the normalized Eisenstein seriesEk = G2k2 � ( 2k ) :De�nition 4. Let' s introduce the sum of divisors functions�k (n) , Xd j n dk :The functions �k are multiplicative and hence determined by�k ( p� ) = 1 + pk + p2k + � + p�kfor primes p.Lemma 5. We have Ek = G2 k2 � ( 2k ) = 1 � 4kB2k Xn> 1 �2 k � 1 (n) qn ;
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where Bk are the Bernoulli numbers de�ned byxex � 1 = Xn> 0 Bn xnn ! :Note that by reordering, Xn> 1 �k (n) qn = Xn> 1 Xd j n dk qn= Xd> 1 dk � qd + q2d + q3d� �= Xn> 1 nk qn1 � qn :This provides the so called Lambert series for Ek , namelyEk = G2 k2 � ( 2k ) = 1 � 4kB2k Xn> 1 nk qn1 � qn :2. 2 Spaces of Modular FormsDe�nition 6. Let Mn denote the space of all modular forms of weight 2n .The following fundamental lemma, see [McKean and Moll, 1 999] , is crucial for describing thespaces Mn .Lemma 7. Let f be a modular form of weight 2n , f � 0 . Denote with m� ; mi ; m1 the multiplic-ities with which f vanishes at � ; i ; 1 , and let m be the sum ofmultiplicities of all the other rootsin the fundamental cel l. Then 13 m� + 12 mi + m1 + m = 16 n:Corollary 8. Mn is a �nite dimensional linear space , spanned by the independent formsE2a E3b ; 2a + 3b = n:In particular, dimMn = ( � n6 � n � 1 (mod 6)� n6 � + 1 otherwise :2. 3 Explicit ExamplesFor illustration and future use, we give some explicit examples.M 0 = CM 1 = f 0gM 2 = C E2M 3 = C E3M 4 = C E22M 5 = C E2 E3M 6 = C E23 � C �M 7 = C E22 E3M 8 = C E24 � C �
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Also recall that Ek = 1 � 4kB2k Xn> 1 �2 k � 1 (n) qn ;and let' s use this to write down the �rst terms of the Fourier expansionsE1 = 1 � 24 Xn> 1 �1 (n) qn = 1 � 24q � 72 q2 � 96q3 � 1 68q4 � �E2 = 1 + 240 Xn> 1 �3 (n) qn = 1 + 240q + 21 60q2 + 6720q3 + �E3 = 1 � 504 Xn> 1 �5 (n) qn = 1 � 504q � 1 6632 q2 � 1 22976q3 � �E4 = 1 + 480 Xn> 1 �7 (n) qn = 1 + 480q + 61 920q2 + 1 050240q3 + �E5 = 1 � 264 Xn> 1 �9 (n) qn = 1 � 264q � 1 35432 q2 � 51 96576q3 � �E6 = 1 + 65520691 Xn> 1 �1 1 (n) qn = 1 + 65520691 q + 1 34250480691 q2 + �� = Xn> 1 �(n) qn = q � 24q2 + 252 q3 � 1 472 q4 + �Remark 9. In the sequel we will consider congruences mod p for the numbers �(n) by estab-lishing relationships between the Eisenstein series En and Ramanujan' s � . It seems that the fol-lowing is true 2m � 2n (mod p� 1 ) � Em � En (mod p) ;where we also allow m; n = 0 with the convention that E0 = 1 . In each individual case this iseasily veri�ed but I didn' t �nd a proof or a reference for the general case. Note that the state-ment above really comes down to divisibility properties of the Bernoulli numbers.2. 4 Di�erentiating Modular FormsWhen introducing the Eisenstein seriesEk (!) = 12 �( 2k ) X(m; n) � 0 1(m + n !) 2 k ;we started with the assumption that k > 2 in order for the de�ning sums to converge. But afterrewriting the sums in terms of �2k � 1 or as Lambert series our hopes are raised to also �nd thatE1 has some modular properties. As it turns out, see [Beukers, 2007] , the function E1 de�ned byE1 = 1 � 24 Xn> 1 �1 (n) qn = 1 � 24 Xn> 1 n qn1 � qnis indeed close to being modular of weight 2 ( recall that such a form cannot exist) . While E1does not satisfy E1 ( � 1 /z ) = z2 E1 ( z) it does satisfyE1 ( � 1 /z ) = z2 E1 ( z) + 1 22�i z :E1 still plays an important role, for instance when it comes to di�erentiating modular forms. Asbefore q = e2�iz . S ince dzdq = 12�i q ;
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we have � f , q dfdq = 12�i dfdz :The following lemma is due to Ramanujan, see [Serre, 1 971 ] .Lemma 10. If f is a modular form ofweight k then� f � k1 2 E1 fis a modular form of weight k + 2 .Remark 1 1 . Ramanujan also discovered, see [Beukers, 2007] , that the pseudoform E1 of weight2 when treated the same behaves similar.� E1 � 21 2 E12 = � 11 2 � E2 + E12 � ;that is � E1 = 11 2 � E12 � E2 � : ( 2 )To put it in a fancy way, the ring C [E1 ; E2 ; E3 ] is closed under di�erentiation. Recall that thering of modular forms is just C [E2 ; E3 ] .Note that the above identity is equivalent to the mysteriously looking�1 (n) � 6n �1 (n) � 1 2 �1 � �1 (n) + 5 �3 (n) = 0 :Remark 1 2. The pseudoform E1 is the logarithmic derivative of� , q Yn> 1 ( 1 � qn) 2 4 ;meaning that � ( log�) = 12�i ddz ( log�)= 12�i ddz  2�i z + 24 Xn> 1 log( 1 � qn) != 1 � 24 Xn> 1 n qn1 � qn= E1 ( z) :Together with the transformation rule for E1 this can be employed, see [Serre, 1 971 ] , to easilyprove that � as de�ned above is a modular form of weight 1 2 .2. 5 Hecke OperatorsHecke introduced certain commuting operators Tn : M k ! M k on the spaces of modular forms.The Tn map cusp forms to cusp forms, and whenever a cusp form is a simultanuous eigenformfor these operators this implies nice properties like an Euler product expansion. Since � is theonly cusp form of weight 1 2 it is automatically an eigenform and the general theory provides thefollowing properties. �(m n) = �(m) �(n) if gcd(m; n) = 1 ;�( pn+ 1 ) = �( p) �( pn) � p1 1 �( pn� 1 ) if p prime :
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It is remarkable that this and more was conjectured by Ramanujan long before the generaltheory. These properties are also captured in the following Euler product expansion for theDirichlet series attached to �(n) , namelyL� ( s ) = Xn> 1 �(n)ns = Yp 1 + Xn> 1 �( pn)pns = Yp 11 � �( p) p� s + p1 1 � 2 s :Example 1 3. The above multiplicative features of �(n) show that�( p) � 0 (mod p) � �(n p) � 0 (mod p) :With this insight it follows for instance immediately from �( 3) = 252 that�( 3n) � 0 (mod 3)as we showed before, see ( 1 ) . There are, however, only a handful known primes p dividing �( p) .In ( 5) we list the �rst few such primes as 2 ; 3 ; 5 ; 7 ; 241 1 .Example 1 4. The multiplicative properties further imply that�(n p) � �(n) �( p) (mod p) :For instance �( 23) � 1 (mod 23) , and hence�( 23n) � �(n) (mod 23) :Remark 1 5. Ramanujan also conjectured the following boundj �( p) j 6 2 p1 1 / 2 ;which was �nally proved in 1 973 based on a proof of the Weil conjectures by Deligne ( he workedon the Riemann hypothesis for varieties over �nite �elds, and was awarded the Fields medal forthis work) . As of 2005, the above inequality held the world record for the ratio length ofproof/ length of the statement, see [Dalawat, 2006] . In general,j �(n) j 6 �0 (n) n1 1 / 2 = n1 1 / 2 + o ( 1 ) :3 Computing � (n)3. 1 Exact FormulasLet' s derive some formulas for � . We will employ the following short-hand notation' �  (n) , Xm= 0n ' (m)  (n � m) :Throughout, we will make heavy use of the explicit presentations given in section 2 . 3.Using E23; E32 . We want to write � = � E23 + �E32 :
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Equating coe�cients of the �rst two terms in the q-expansions yields0 = � + � ;1 = 3 � 240� � 2 � 504�:Thus 1 728 � = E23 � E32 ;and �(n) = 51 2 �3 (n) + 1 00 �3 � �3 (n) + 8000 �3 � �3 � �3 (n) + 71 2 �5 (n) � 1 47 �5 � �5 (n) :Using E32 ; E6 . Now, lets �nd � ; � such that� = � E32 + �E6 :This requires 0 = � + �;1 = � 2 � 504� + 65520691 �:Hence 762048 � = � 691 E32 + 691 E6 ;or �(n) = 691756 �5 (n) � 6913 �5 � �5 (n) + 65756 �1 1 (n) : ( 3)Using E6 ; �E5 . From lemma 1 0 we know that�E5 � 56 E1 E5 = � 56 � 24q + �is a modular form of weight 1 2 . � = � E6 + �� �E5 � 56 E1 E5 �yields to 0 = � � 56 �;1 = 65520691 � � 24 �:We conclude that 228096 � = 3455 E6 + 41 46 �E5 � 3455 E1 E5 ;and �(n) = 22751 584 �1 1 (n) � 6911 44 n �9 (n) + 34559504 �1 (n) + 3455864 �9 (n) � 345536 �1 � �9 (n) : ( 4)Among what we found, ( 4. 1 . 3) is probably the most useful formula for actually computing �(n) .Expanded it reads as�(n) = 65756 �1 1 (n) + 691756 �5 (n) � 6913 Xm= 1n �5 (m) �5 (n � m) :
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3. 2 RecurrencesUsing lemma 1 0 we �nd that � � � E1 � = 0 ;since there is no nonzero cusp form of weight 1 4. Thus(n � 1 ) �(n) = � 24 �1 � �(n) = � 24 Xm= 1n� 1 �(m) �1 (n � m) ;which is a recursion for �(n) .As a nice by-product, we also �nd thatn � 0 ; 2 (mod 6) � �(n) � 0 (mod 24) :4 Congruences for � (n)The results in this section are mostly in the spirit of Ramanujan, see [Berndt and Ono, 1 999] .For more congruences and a glimpse at a general theory behind these congruences we refer thereader to [Swinnerton-Dyer, 1 988] .Modulus 5 . Note that E2 � 1 ; E3 � E1 (mod 5 ) :Thus with ( 2 ) , 1 728 � = E23 � E32 � E2 � E12 = � 1 2 �E1 (mod 5 ) ;or �(n) � n �1 (n) (mod 5 ) :Note that this also follows immediately from ( 4) .Modulus 25. Using again E2 � 1 (mod 5 ) and E3 � E1 (mod 5 ) , we get1 728 � = E23 � E32= 2 (E22 � E1 E3 ) � (E2 � E12 ) + E2 (E2 � 1 ) 2 � (E3 � E1 ) 2� 2 (E22 � E1 E3 ) � (E2 � E12 ) (mod 25 )= � 4 �E3 + 1 2 �E1which together means �(n) � 4n �1 (n) � 3n �5 (n) (mod 25) :The polynomial x2 (x4 � 1 ) 2 = x � x9 � 2 x5 + x �vanishes for all moduli with respect to 25, which implies thatn �9 (n) � 2n �5 (n) + n �1 (n) � 0 (mod 25) :Together with the obvious �5 (n) � �1 (n) (mod 5 ) this simpli�es our congruence to�(n) � n �9 (n) (mod 25 ) :

Ramanujan' s Tau Function With a Focus on Congruences

Armin Straubmath@arminstraub. com 1 0/1 3



Modulus 5k . Ramanujan conjectured, see [Berndt and Ono, 1 999] , that for any k it is possibleto �nd a ; b such that if n is not a multiple of 5�(n) � na �b (n) (mod 5 k ) :He o�ers for example �(n) � n41 �2 9 (n) (mod 1 25 )whenever n is not a multiple of 5 . While the latter is indeed true, the conjecture is false for k >4 . To see this take n = 443, which is prime, and verify that for any a ; b�( 443) = 32836984871 8692 � 567 
 443a � 1 + 443b � � mod 54 �since 4432 � � 1 (mod 5 4) . It' s comforting to know that even a genius like Ramanujan can err.Modulus 7 . Clearly, E3 � 1 ; E22 = E4 � E1 (mod 7) :Therefore lemma 1 0 gives,1 728 � = E23 � E32 � E1 E2 � E3 = 3 �E2 (mod 7) ;that is �(n) � n �3 (n) (mod 7) :Modulus 691 . It follows right from the exact formula ( 3) ,�(n) = 691756 �5 (n) � 6913 �5 � �5 (n) + 65756 �1 1 (n) ;that �(n) � �1 1 (n) (mod 691 ) :5 Negative ResultsAs presented in [Serre, 1 997] , congruences such as we showed for modulus 3 , see ( 1 ) ,m � 2 (mod 3) � �(m) � 0 (mod 3) ;don' t necessarily exist. In fact, for instance no congruence of the formm � a (mod b) � �(m) � c (mod 1 1 )can exist for any integers a ; b ; c such that a ; b are relatively prime.6 Almost Always DivisibilityRamanujan asserted, see [Rankin, 1 988] , that forp= 3 ; 5 ; 7 ; 23 ; 691 ;�(n) is almost always divisible by p in the sense thatXn6 x ; p -� (n) 1 = o(x ) :
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In fact, he claims that for almost all n�(n) � 0 (mod 2 5 � 33 � 5 2 � 72 � 23 � 691 ) ;which he contrasts to the fact that n = 1 381 is the �rst such that �(n) � 0 (mod 691 ) .Today it is known that for any integer m , �(n) is almost always divisible by m . But the proof ofthis fact requires di�erent methods than Ramanujan used to show his assertions.7 Open ProblemsDoes �(n) ever vanish, that is �(n) = 0 for some n? This is known as Lehmer' s conjecture andhas been empirically veri�ed for large values of n . As initially stated, one hoped that Lehmer' sconjecture might be attackable by congruence considerations. To illustrate this hope, considerjust the congruence �(n) � �1 1 (n) (mod 691 ) :Rewritten as �( p) � 1 + p1 1 (mod 691 )it shows that �( p) = 0 � p� � 1 (mod 691 ) ;because Z 6 9 0 contains no elements of order 22 . The �rst candidates are thusp= 1 381 ; 5527 ; 8291 ; 1 2437 ; 221 1 1 ; 29021 ; 30403 ; �Combining this with other congruences one is able to quite impressively narrow the density ofthese candidates, see [Serre, 1 997] . Let' s just consider the other congruences we found, namely�( p) � p ( 1 + p9 ) (mod 25)�( p) � p ( 1 + p3 ) (mod 7) :Then �( p) = 0 � � p� � 1 (mod 5 2 � 691 )p� � 1 ; 3 ; 5 (mod 7) � ;which leaves us with the candidatesp= 863749 ; 1 381 999 ; 1 589299 ; 1 692949 ; 231 4849 ; 2833099 ; �The only primes p known for which �( p) � 1 (mod p)are p = 1 1 ; 23 ; 691 . It is an open problem, see [Sloane, 2007] , to decide whether there are moresuch primes or even in�nitely many. None are known up to 31 4747.The following results have been veri�ed for all primes 6 1 6091 .�( p) � 0 (mod p) � p= 2 ; 3 ; 5 ; 7 ; 241 1 ; � ( 5)�( p) � 1 (mod p) � p= 1 1 ; 23 ; 691 ; ��( p) � � 1 (mod p) � p= 5807 ; �
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Is �(n) ever a prime? The �rst number such that this is the case is�( 63001 ) = �( 251 2 ) = �( 251 ) 2 � 251 1 1 = � 80561 663527802406257321 747 ;as found in [Lehmer, 1 965] .Bibliography[Berndt and Ono, 1 999 ] Berndt, B . C . and Ono, K . ( 1 999 ) . Ramanujan' s unpublished manuscript on thepartition and � functions with proofs and commentary. Semina ire Lo tharingien de Comb inato ire , 42 ( c) .[Beukers, 2007 ] Beukers, F . ( 2007) . Modular forms. Published online athttp: / /www. math . uu. nl/people/beukers/modularforms/modularformscript . pdf.[Dalawat , 2006 ] Dalawat, C . S . ( 2 006 ) . The tao of mathematics , and think locally. Published online athttp: / /arxiv. org/abs/math/0605327.[ Lehmer, 1 965 ] Lehmer, D . H . ( 1 965) . The primality of Ramanujan' s �-function. The American Mathe -matica l Monthly , 72 ( 2 ) : 1 5�1 8 .[McKean and Moll , 1 999 ] McKean, H . and Moll, V. ( 1 999 ) . Elliptic Curve s: Function Theory, G eom-e try, A rithme tic . Cambridge University Press .[Rankin, 1 988 ] Rankin, R. A . ( 1 988 ) . �-function and its generalizations. In Ramanujan Revisited , Proceed-ings of the Cene tary Conference . Academic Press .[ Serre, 1 971 ] Serre, J . -P . ( 1 971 ) . Congruences and modular forms ( following H . P . F . Swinnerton-Dyer) .Sémina ire Bourbaki , ( 41 6) . Translated by Jay Pottharst .[ Serre, 1 997 ] Serre, J . -P . ( 1 997) . An interpretation of some congruences concerning Ramanujan' s �-func-t ion. Published online at http: / /www. rzuser. uni-heidelberg. de/ hb3/ serre. ps .[ S loane, 2007 ] S loane, N . J . A . ( 2 007) . The On-Line Encyclopedia of Integer Sequences. Published elec-tronically at http: / /www. research. att . com/sequences.[ Swinnerton-Dyer, 1 988] Swinnerton-Dyer, H . P . F . ( 1 988) . Congruence propert ies of �(n) . InRamanujan Revisited, Proceedings of the Cene tary Conference . Academic Press .
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