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1 Definition of Gaussian Objects

This first section will be fundamental for the rest of these lectures. We will introduce the gen-
eral notion of Gaussian random vectors that will be used throughout this text.

In this context “objects” mean random variables, random vectors or measures.

1.1 Omne Dimensional Case

Consider the space R. Recall that a random variable X is normally distributed with mean a
and variance 02 — usually denoted as X ~ N (a, 02) — if its density with respect to the Lebesgue
measure is

z —a)?

p(z) = \/% eXP( - (27)

Let’s collect some well known properties of such random variables:
e X~N(0,1) = a+0X~N(a,o?).
e X;~N(aj,09), X;independent = X+ Xo~ N(a1+as, o+ U%).
This property is called stability.

e For X~N (a, 02) the characteristic function and the Laplace transform evaluate to

242
E(exp(itz)) = exp(iat—%)

E(exp(Az)) = exp(a)\+a22)\2).

1.2 Finite Dimensional Case

Now, let our space of interest be R™. A random vector X = (Xj) is called standard normal if its
components X; are independent and standard normally distributed.

Following the first property in the one dimensional case, we could now define a random vector Y
to be Gaussian iff it can be written as Y =a + L X where X is standard normal and L: R* — R"
is a linear mapping. As we will notice later, this approach is not well suited for generalization.
So we take an alternative one.

In general, there is no way to define Gaussian random vectors via densities as we were able to in
the one dimensional case. Just think of the situation were L is degenerated.
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Definition 1.1. A random vector Y € R" is called Gaussian iff (y,Y) is a Gaussian random
variable for every y € R™.
Let’s check that this definition coincides with the one mentioned before.

n

(U'JFLXay):(avy)+(X7L,y):(a7y)+ZXj(Lly)ja

j=1

and, clearly, the right-hand side is normally distributed and thus Gaussian.

Notation 1.2. Let a=E X be the expectation (which may be understood component-wise) and
K the covariance matriz of X defined by K = cov(X;, Xi). Then, we write X ~ N(a, K) iff
X is Gaussian.

Let X be standard normal — that is X ~ N(0, I,) — and consider Y =a + L X. Then E(Y) =a
and cov(Y)=cov(LX)=LL'"

Now we have lots of Gaussian random vectors, but there are some questions remaining;:
(a) Does N(a, K) exist for all choices @ and K?
(b) Is N(a, K) unique?
(c) Are there any Gaussian laws that are not covered by N(a, K)?

Let’s answer these questions bottom up: the last one reduces to the existence of second moments
of random vectors. For uniqueness, we look at the characteristic function. Let X be a Gaussian
vector with E X =a and cov(X) = K. Then E (y, X) =(y, a) and Var (y, X) = (y, Ky). There-
fore, the characteristic function is

Eexp(i(y,X))= exp(i(y, a) — W),

which just depends on a¢ and K. But as one knows from Probability Theory, this means that
the distribution of Gaussian X is uniquely determined given a and K.

For the question of existence, we reason that N(a, K) exists iff N(0, K) exists because we may
shift Gaussian random vectors. In contrast to a we cannot choose the covariance matrix K arbi-
trarily. Indeed, K has to be symmetric and positive semi-definite:

(v, Kz) = (Ky,z)
(z,Kz) = 0.

Fortunately, these conditions are sufficient as well. We can see this as follows: they are equiva-
lent to K ej = \je; for e; being an orthonormal basis of R™ and A; > 0. But then we can define

L via Le;j=+/\; ej, which makes L X ~ N (0, K) for a standard normal X.

In comparison to the one dimensional case, let’s write down some properties of Gaussian
random vectors:

¢ X~N(0,I,) = a+LX~N(a,LL").
(] XjNN(aj,Kj), Xj independent — X1+X2NN(CL1+CL2,K1+K2).
Again, this property is called stability.
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e For X ~ N(a, K) the characteristic function, resp. the Laplace transform evaluate to

Eexp(i(s,X)) = exp((i(w.0) - L50)

(y, Ky)
exp((y,a)+y2—y>.

Eexp((y, X))

Exercise 1.1. Let X; be Gaussian random variables. Is it true, that X = (X1, ..., X,) is a Gaussian random
vector?

1.3 General Case

Let X be a linear space enhanced with a topology (we will clarify meaningful properties of the
space and its topology later). Denote with X’ the dual space of X, i.e. the space of continuous
linear functionals. Let X be a random vector taking values in X. For f € X’/ and = € X we will
often write (f,z) instead of f(z).

In complete analogy to the finite dimensional case, we define Gaussian random vectors.

Definition 1.3. X is called Gaussian iff (f, X) is a Gaussian random variable for every f €
X’

In a similar fashion, we define the expectation and covariance of random vectors:

Definition 1.4. a € X is an ezxpectation of X iff E(f,X)=(f,a) for all feX’.

Further, K: X' — X is called covariance (operator) of X iff cov((f, X), (g9, X))=(f,K g) for
all f,ge X',

In the case of existence, we will write E(X)=a and cov(X)=K.

Remark 1.5. At the beginning of this section we just took X to be a linear space with a
topology. As you can e.g. grasp from the definition of an expectation, we need to have X’ to be
sufficiently large (in particular it should be non-degenerate, i.e. larger than just {0}), so that
there are enough continuous linear mappings. Otherwise there could be lots of expectations
making our definition loosing sense.

Thus, we restrict ourselves to special spaces X. Three possibilities where generality increases
top-down are:

(1) X a separable Banach space, e.g. C[0,1], L?[0, 1].
(2) X alocally convex topological linear space that is metrisable, e.g. C[0,00), RN.
(3) X alocally convex topological linear space such that the law of X is a Radon measure.

We will silently assume that we are in one of these cases (i.e. we are in the last case) and only
refer to this as the “usual conditions”.

Again, just imitating what we have done before in finite dimensions:

Notation 1.6. Suppose that a =E X and K = cov(X) exist. We write X ~ N(a, K) iff X is
Gaussian.

Having defined these notions, we have to ask us the following questions afresh:

(a) Does N(a, K) exist for all choices a and K?
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(b) Is N(a, K) unique?
(c) Are there any Gaussian distributions that are not given by N(a, K)?

Under the “usual conditions” one can show that for Gaussian X expectation and covariance
exist, which answers the last question. The second point is handled exactly as in the finite
dimensional case: looking at the characteristic function, which we recognize to depend on a and
K only, we can still conclude that the distribution of X is uniquely determined by these two.

Again, N(a, K) exists iff N(0, K') does and we have the following necessary conditions for K:

(f,Kg) = (9,KF)
(f,Kf) = 0.

But in contrast to the finite dimensional situation, these conditions don’t suffice. Unfortunately
sufficient conditions are in general difficult and depend on the space & (comfortingly the ques-
tion of existence is not of high practical importance — things interesting enough to study tend to
exist). See exercise 2.1 for a surprising example.

2 Examples of Gaussian Objects

2.1 Main Examples

Example 2.1. (Standard Gaussian Measure in RN) Let X = RN endowed with the
topology induced by the Fréchet metric

p(&) =Y 27 (2 A1),

The dual space X’ can be interpreted as the space of all “finite real sequences” denoted by X' =
co. Here finiteness means that for (f;)jen € X’ there is an index jo € N such that f; =0 for j >
jo- The action of f on X is given by

(f,I):Z fjxj’
j=1

which, actually, is just a finite sum.

Now we take a sequence of standard normal random variables X = (X;)jen with X; i.i.d. and
X;~ N(0,1). Then X is a random variable variable taking values in X. Further, X is centered,
i.e. EX =0, because for f €X' (recall its finiteness)

]E(faX):E(Z ijj>:Z HEX;=0.
i=1 =1

The covariance operator K: co — RY is just the inclusion mapping K: f — f. This can be veri-
fied as follows

cov((f,X), (9, X))

B((7.X) (9. X0)=E(( X £%5) (X 9:%;))

= Y [n9nBXnXp)=) fi9,=(f,Kg).

FJEN XN
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The law of X is called the standard Gaussian measure in RN.

Example 2.2. (Gaussian Measure in Hilbert Spaces) Let X be a Hilbert space (endowed
with the topology induced from the inner product — such obvious choices won’t be commented
in the sequel). Due to Riesz representation theorem, the continuous linear mappings arise from
the inner product with the first argument fixed and the dual space is just identified as X’/ = X.

Let {e;: j € N} be an orthonormal (Schauder) basis and i.i.d. standard normal random variables
(&;) as well as real numbers o; >0 such that Y 07 < co. We define the random element

X=3Y"o0j&e;
j=1

in X; the sum converges almost surely in norm and is thus almost surely well defined (so it may
be redefined arbitrarily on the exceptional set of measure zero if one feels bothered — we will feel
just fine in the sequel with such almost sure well defined elements, at least if we are only inter-
ested in their law).

As £~ N(0,1) for j € N the expectation of X is again a =IE(X) =0 because

E(f,X) :]E( D05 (f,ej)) =" 0, E(&) (f,e5)=0.
To get the covariance operator K: X — X we look at

cov((£,X), (9. X)) = cov( Y o5& (f,e0), Y 0565 (9,¢5) )
= Z cov(&y,€52) 05,052 (f€51) (f€52)
= > 03 fi9;=(f,Kg)

and from the last equality we read that
K:g»—)Z szgjej.

K can be thought of as an infinite diagonal matrix with entries 0'?. Computing the expected
square norm of X we get

1E||X||2:1E( > Xf-) =Y oE(&) =) i<

Exercise 2.1. Let X be an infinite dimensional Hilbert space. Show that there is no standard Gaussian
measure on X, i.e. there is no Gaussian random variable X whose covariance operator is the identity.

Example 2.3. (Brownian Motion) Let X = C[0, 1] be the set of all continuous functions on
the unit interval and X = W be a Wiener process (i.e. a Brownian motion) on X. The only
properties of such a process W we will need here are

EW;=0 and E(W,W;)=sAt.

We will clarify, what a Gaussian process is, in the following example 2.4. We will see that s A ¢
is the covariance kernel of W which indeed defines W completely.

You can see a typical trajectory of a Brownian motion in figure 2.1.
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\4

-1 4

Figure 2.1. A trajectory of Brownian motion

The dual space X is the set of all “signed measures” on the unit interval, denoted by M]0, 1]. A
signed measure p € M|[0, 1] is the difference of two finite measures on [0, 1], i.e. u=wv; —vo. The
action of p on C[0,1] is given by

(u,f)—/ol fda.

We are now interested in expectation and covariance operator of the Wiener process W.
Because of

E(NaW)ZE/WtN(dt):/ E W, p(dt) =0,
its expectation is EW =0. As usual, we determine K: M|0,1] — C]0,1] by

cov((u, W), (v, W)) = E /Wt,u(dt) /Wtzx(dt):]E / W, W, p(dt) p(ds)

- / / E(W, W) v(dt) p(ds) = / /sAtu(dt) u(ds) = (. K v)
and it follows that

(Ky)(t)—/o1 s Atu(ds).

Example 2.4. (Gaussian Processes) Let T be a compact metric space. X is called a Gaus-
sian process on T iff X is a Gaussian random vector taking values in X = C(T). As in the case
T =10, 1] for the Wiener process we get X’'=M(T), i.e. the space of all signed measures on 7.

For a random vector X € C(T') to be Gaussian, it is sufficient that for any ¢i, ..., ¢, € T the
random vector (X, ..., X¢,) is Gaussian. It is clear that this condition is necessary as well,
because the measures concentrated in the points ¢y, ..., t, are contained in M(T).

Let X be a Gaussian process. Its expectation E X =a € C(T') can, again, be understood compo-
nentwise, since

a(t)=E X;.

Its covariance operator K: M (T)— C(T) is given by

(Kv)(t) = /T cov(X,, X) v(ds) = /T k(s, ) v(ds),

where k(s, t) = cov(Xs, X3) is called covariance kernel. It is left as an exercise to thoroughly
check these statements.

In particular, a Gaussian process X is defined completely by its expectation and covariance
kernel.

Armin Straub 8
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2.2 Special Examples of Gaussian Processes

Example 2.5. (Fractional Brownian Motion) Let 7'= [0, 1] be the unit interval and a € (0,
2]. A Gaussian process W) is called fractional Brownian motion iff

EW(® =0 and cov(W,fa), Wt(a)) =k(s,t) 1:%(|5‘a+ [#]% = [t = s[*).

W is just a classical Wiener process. It may seem that the choice of k looks unmotivated, but
note that

2
]E‘Wt(“)—Ws(o‘)‘ =t —s|o

In figure 2.2 you can see the impact of the parameter a on the look of a “typical” trajectory.

1
! N>
1
-1 a=0.7
1f 1f§

-1 + a=1.3 -1 + a=17

Figure 2.2. Trajectories of fractional Brownian motions

Let’s look at the extremal values a =2 and « tending to 0. For a =2 we get k(s,t) = st so that
we can define Wt(2) =t W1(2) receiving a fractional Brownian motion W that just depends on

the single random variable W1(2)'

Let o — 0. For s =t we have |t — 5|* — 0 which motivates to define the Gaussian process W ()
via

1
EW©®=0 and cov(WS(O), Wt(o)) =k(s,t)=3 2 for s #1

1 for s=t
This makes every Wt(o) a standard normal random variable and reflects a great amount of inde-
pendence between WS(O) and Wt(o) for s=£t. It is an exercise to investigate this case more closely.

Example 2.6. (Brownian Sheet) The Brownian sheet is a Gaussian process W on T =0, 1]¢

defined by
d
EW; and cov(Ws, W) =]] siAta
i=1

The covariance kernel can be interpreted geometrically as the volume of intersections as shown
in figure 2.3 for d=2.

Armin Straub 9
math@arminstraub.de



Gaussian Random Functions Examples of Gaussian Objects

Figure 2.3. Geometric interpretation of Brownian sheet’s covariance kernel

Example 2.7. (Lévy’s Brownian Function) Let 7 =R In analogy to the definition of the
fractional Brownian motion we define Lévy’s Brownian motion W) via

1
EW® =0 and cov( W, W) =Z(lsl|+ 1t - 1t —s]).
It’s therefore no surprise that

2
E|w - w|| = [t s

Example 2.8. (Fractional Brownian Sheet) The fractional Brownian sheet with parameter
a € (0,2] is a Gaussian process W(® on T'=1R¢? given by

d
o « a 1 a a a
EW® =0 and cov(Ws( ) W ))=§H (lsl® + £l — 1t — s]|).
i=1

Example 2.9. (Lévy’s Fractional Brownian Function) You may guess how Lévy’s frac-
tional Brownian function W% (again a Gaussian process on T = R¢ and a € (0, 2]) will be
defined. Surely, you get it from

a o 1
EW®) =0 and cov( W, W) = (]| + ) It —s]|*).

2.3 Gaussian White Noise and Integration

Definition 2.10. Let (A, 2, v) be a measure space and v a finite measure. A mapping X: 2 X
Q—R, (B,w)— Xp(w) is called Gaussian white noise iff for any B, B; € and B; disjoint

Xp ~ N(0,v(B))
XB,uB, = Xp,+XB, a.s.
XB, XB, independent.

Gaussian white noise X is like a random measure on A lacking only o-additivity (which makes
it a random content in fact).

We will now define the integral over Gaussian white noise X for integrands f € L?(4,v). Just as
the Lebesgue integral is commonly defined stepwise — starting with indicator functions,
extending it to linear combinations of indicator functions and then to arbitrary functions — we
will introduce the integral over white noise.

o Let f=1p be an indicator function and B €2. We define

/de:/ 1pdX :=Xp.

Armin Straub 10
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o Now set fZZ;.lzl cjlp, for c; €R and B; €%. The integral of f is

/de:/ > cjlp,dX =) ¢; Xg,
j=1 j=1

Note that this is well defined due to the properties of the Gaussian white noise X.

e For f,— f in the L? sense we define the integral of f as the L? limit of the integrals of

I
/fndX—>/de.

It is left to the reader to check all the details.

The integral over Gaussian white noise has a property called isometry that proves to be very
useful later on. For f, g€ L%(A,v)

fmo={ fra o)
/Afzdy—]E</de>2.

The reason we are introducing Gaussian white noise is that many Gaussian processes including
Brownian motion can be written as integrals over Gaussian white noise.

and in particular

Example 2.11. (Brownian motion) Let (4, %, v) = ([0, 1], B, X) where X\ denotes the
Lebesgue measure over the Borel sets B and let X be Gaussian white noise on this space. For
t €10,1] define

WtZ/ Ljo,9 dX = X[o,q-

‘We claim that W is indeed a Brownian motion. Let’s check

EW, = EXjgq=0

1
and cov(W,, Wy) = ]E( / 1[0, dX/ 10,4 dX) :/ Ljo,s) 1o,y dA=sAt
0
where we used the isometry property of the integral over X.

Exercise 2.2. Do the same for the Brownian sheet.

Remark 2.12. In literature (see e.g. [Liptser, 1997, section 10]), you will also find another
notion of Gaussian white noise. Although the trajectories of a Brownian motion W are almost
surely nowhere differentiable, one is able to define a generalized derivative. The resulting Gaus-
sian process (the meaning of process is a bit more relaxed then, because the trajectories are dis-
tributions) W’ is also referred to as Gaussian white noise. W’ is a centered process defined by
its covariance kernel

k(s,t)=0(t—s)

Armin Straub 11
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where § denotes the Dirac distribution. This is not surprising if you keep in mind that the
Brownian motion W is a martingale. A local change should be independent from other local
changes and the average change should be zero.

You might see a link to our notion of Gaussian white noise if you recall example 2.11. There we
showed that Brownian motion arises as an integral [ g ... over white noise. More exactly, we
have Xg= f 15 dW where the last integral is a stochastic one.

3 Kernels of Gaussian Measures

Throughout this section let X be a linear space, X be a Gaussian random vector taking values
in this space and P be the law of X. For simplicity we assume X to be centered, i.e. E(X)=0.
Therefore we have P = N(0, K), where K: X’ — X is the covariance operator of X.

We now want to tag a subspace H C X that contains most information about the measure P.
This subspace will depend on P and we will call it kernel.

3.1 Definition and Basic Properties

In order to define the kernel, we will introduce the notion of measurable linear functionals which
is pretty straightforward.

The dual space X'’ of X consists of all the continuous linear functionals on X. We are now going
to enlarge this space obtaining the so called measurable linear functionals X'» which depend on
the measure P.

First, we observe that every f € X’ is square-integrable, that is (f,-) € L?(X, P), due to
/ (fal')QdP(l'):]E(faX)QZ(.faKf) < o0.

Thus we have the injection
I X'— L*X,P).

Just as measurable functions arise as limits of continuous functions, we define the measurable
linear functionals to be the limits (in the L? sense) of continuous ones. In other words Xp =
closure(I'(X")).

An element z € Xp can therefore be written as z = lim,, o (fn, ), where we mean E(z(X) —
(fny X))?— 0. Note that z(X) is well defined on a set of measure 1.

As a closed subspace of the Hilbert space L?(X, P) the space Xp is a Hilbert space itself reusing
the existing inner product

(21,22) 3, = (21, 22) a2, py = E(21(X) 22(X)).-

In particular, ||z ||:fw) = E(2(X))

We suggestively denoted the injection of continuous linear functionals into the square integrable
functions by I’, because we are interested in its adjoint operator I: Xp — X (recall that X5 is a
Hilbert space and thus may be identified with its dual space).

Note 3.1. As I’ is not continuous in general we don’t automatically have the existence of its
adjoint operator. But we won'’t track this here.

Armin Straub 12
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So I is defined via (f,I2)=(I"f,2)xp for f€ X’ and z € Xp.

K X
SN A
X

Figure 3.1. Decomposition of covariance operator K =11’

X/

We claim that I is in some sense the square root of K, that is K =11’ making diagram 3.1 com-
mutative. Indeed, for every f, g€ X’ we have

(g, 11' f)=(I"g,I' f)axp=E((g,X) (f, X)) =cov((g,X), (f, X)) =(g9,K ).

Furthermore, I is an injection: if 7z=0 then (g,12)=(I"g,2) =0 for all g € X’. Because {I’ ¢
g€ X'} is dense in Xp this implies that z=0.

Definition 3.2. We define the kernel of P to be Hp := H := I(Xp) endowed with the inner
product induced from Xp

(h; h2) g i = (21, 22) 4y = E(21(X) 22(X)),

where h;=1z;, that is z; is the preimage of h; (well defined since I is an injection).

Thus I maps the measurable linear functionals X/ bijectively onto the kernel. Let’s collect some
properties of the kernel.

e K(X')CHCX, where K(X') C H whenever there are measurable non-continuous linear
functionals. This is because K(X') = I(I'(X’)) which is the image of all continuous linear
functionals whereas H is the image of all measurable linear functionals (I is an injection).

e If dim(H) = oo then P(H)=0. This is perhaps somewhat astonishing as H shall in some
sense contain all important information about P.

e But supp(P) = closure(H) which softens the above comment about H being a zero set.
Recall that supp(P) denotes the smallest closed set of measure 1.

e H is separable.

3.2 Examples

Example 3.3. (Standard Gaussian Measure in RN) Choose X = RN and let P be the
standard Gaussian measure on X — see example 2.1. If X is a random vector with law P, e.g.
X =(Xj) ey such that X; iid. and X;~N(0,1). What is the kernel Hp of P?

‘We claim that

Hp=l,.

We know that X’ = ¢ is the set of all finite sequences and (f,z)=>_ fjz; for f € X'. I’ — the
interpretation of X’ as a subset of L%(X, P) — does the same in a different space

(' H@)=>" fiz;

Armin Straub 13
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The inner product in X'p is just borrowed from L?(X, P) and thus

I flae=E fX2=E( Y fi2;) =3 2=11113

where we did not really feel that f was a finite sequence. The set of the measurable linear func-
tionals X4 is in some sense enriched with the L? limits of X’ and thus consists of all

z(z) = szacj where ZZ < oo.

Note that z is well defined on a set A C X of measure P(A) = 1. While X’ = ¢y we thus have
Xp =1, with the standard inner products.

Immediate calculation (just check (f,Iz)=(I' f,z)xp for f € X’ and z € Xp) provides us with
I Xp— X, zw—(zj)jen,
verifying that
Hp=I(Xp) =15,

which denotes equality of the spaces including the norm.

Let’s check some of the mentioned properties of the kernel. We have I, C RN and as dirn(]RN) =
oo we indeed have P(l2) =0.

Example 3.4. (Gaussian Measure in Hilbert Spaces) Following example 2.2, let X’ be a
Hilbert space, {e;: 7 € N} an orthonormal basis, &; i.i.d. and & ~ N (0, 1) as well as 0; >0 and
> 03 <o0. Let P be the law of X =3 0;&;e;. What is the kernel Hp of P?

As X is a Hilbert space we have X' =X and for f € X’ we get (f,z)=>Y_ f;(z,e;) which is not
changed by I’

('l ZfJIe]

as we are still talking about the same object under I’. The norm in X4 comes from L? and thus

11 flag =101 £, X =5( 3 036 ;) =3 f30% (31)

It is therefore not astonishing that X5 consists of all z € L?(X, P) such that

z(w):z zj(z,ej) where Z 23 0% < o0.

Again, z is well defined only on a set A C X of measure P(A) =1. The norm in X% is given by
(see 3.1)

lzllaz=2_ 250}

We claim that I: X4 — X is defined by

— 52e:
IZ—E z;05ej,

which is verified by
(Fi12)=)" fiz05=(I"f,2)xs
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for f € X’ and z € Xp. Therefore, the kernel Hp = I(X[o) is made up by all A € X that can be
written as h=1z for z € Xp. Then h; —Z]U and thus

Bl = 13 =3 o= 3" 1
Hp= Z||X,',—ZZJUJ Z 2
7;

(if certain o; should be zero than h; has to be zero as well) and we get

h2
Hp=<hecX: —L <0
p{rexy ]
with inner product
N\ Yihi
S S
which does not conincide with the inner product of X.

Example 3.5. (Finite Dimensional Case) Let X = R" and P = N (0, K) a centered Gaus-
sian measure such that K: R™— R™ is not degenerated, i.e. K(R"™)=R".

Then — as we can conclude from the Hilbert space case — the kernel Hp is just the whole space
Hp =R" endowed with the inner product

1 1
(9. M) up=(9, K~ 'h)= (Kﬁfg,KTh)-

3.3 Factorization Theorem

Let’s recall the construction of the kernel H of the Gaussian measure P. First we decomposed
K into K = I I’ where I’ is the inclusion of the continuous linear functionals into the square
integrable functions. Then, the kernel of P is defined H = I(Xp) as the image of all measurable
linear functionals under I.

Unfortunately, the space X/ of all measurable functionals is quite difficult in general. This way
it would e.g. be very hard to get the kernel of the Wiener process. Therefore we are looking for
an alternative replacing X'/ by something more convenient.

Theorem 3.6. (Factorization Theorem) Let H be a Hilbert space and J: H — X an injec-
tive linear mapping such that K = J J'. Then the kernel H is J(H) with inner product (J zi,

JZQ)H = (Zl, ZQ),H.

This theorem essentially tells us that we can take an arbitrary Hilbert space H instead of the
special maybe difficult Xp. Figure 3.2 shows this situation.

X\_/;X

Figure 3.2. Factorization theorem
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Example 3.7. (Brownian Motion) Having the factorization theorem as a tool we can go for
the kernel of the Wiener measure. Let X’ be C[0, 1] and X be the Wiener process with law P.
Then E(X) =0 and the covariance operator K: M|0, 1] — C[0, 1] is determined by (K u)(t) = [
s Atu(ds).

We take our Hilbert space to be H =L?[0, 1] and the operator J: L2[0,1] — C[0, 1] to be the inte-
gral operator (Jz)(s) f 0 t)dt. Now we have to check that this is what we need to apply the
factorization theorem.

The adjoint operator J': M0, 1] — L2[0, 1] of J is (J' u)(t) = u[t, 1]. It is left as an exercise to
check this. As J is an injection we just have to validate JJ'= K:

/s( )(t)dt—/o tldt—//dt,udu

/ / LicaTocudtpu(du) = / s Aup(du) = (K ) (s).

(17" m)(s)

We can therefore use the factorization theorem to obtain Hp = J(L?[0, 1]) which tells us that
he Hpiff h(s)= [ = o #(t)dt for some z € L?[0, 1]. This condition is equivalent to h being abso-
lutely contlnuous with square integrable derivative and h(0) =0. Thus our kernel is

Hp={heAC|0,1]: h(0)=0,h'€ L*0,1]}

with inner product
1
(g7h)HP:(gl’hl)L2[0,1]:‘/0' gl(S) h/(s)ds.

‘We recognize that Hp is a Sobolev space usually denoted by W% or H&’2. In this context, its is
also called Cameron-Martin space. Because this was the first really important kernel studied,
this name is sometimes used for other kernels as well.

As a generalization of what we did for the Brownian motion we now want to look at processes
that arise as integrals over Gaussian white noise (and this class of processes is very rich).

We take a measure space (A, ) and Z Gaussian white noise on A. Let X be C(T') where T is
compact. We want to obtain the kernel of (the law of) the process X; = [ , mq(u)Z(du) which
is well defined if m; € L%(A, v).

Our approach is now fairly the same as in the case of the Wiener process (recall that we get it
by setting (A, v) = ([0, 1}, A) and m; = 1jg,4)). We take the Hilbert space H = L%(A, v) and the
operator J: H — C(T) defined by (J f)(t) = [ , m(u) f(u)v(du).

Then the adjoint operator J': M(T) — H is (J' p)(u) = [ my(u)p(dt). Its again an exercise to
verify this. Let’s check if K =J.J’

) = [ m) (7 )@t = [ m) [ i) uas)via
[ [ ey ma(wwttn) uas) = [ (s, 1) ) = (e

where

k(s,t) /mt u) mg(u)v(du)

( / ma(u) Z(dw) / ma(u du)) E(X, X,) = cov(Xs, X).
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Example 3.8. (Brownian Sheet) By setting X = C(T) with 7= [0, 1]¢ and choosing (A, v) =
(T, \) as our white noise space with Gaussian white noise Z, we get the Brownian sheet X as
the integral

X, = / 1j0,4dZ.
T

So we can use the above observations by setting m;(u) = 1jo¢(u). The kernel of the Brownian
Sheet then consists of all functions f that can be written as

for some z € LZ([O, 1]d). To vgrite the kernel more explicitly you can interpret z as the mixed

derivative of f, that is z= Po1. 052 f and imitate what we did in the case of the Wiener measure.

Example 3.9. (Brownian Bridge) This example is quite important for statistics. You get
the Brownian bridge W from W, = W, — t Wy where W is a standard Brownian motion and ¢ €
[0, 1]. Thus the Brownian bridge starts and ends in 0. Just as a good bridge spans a river the
Brownian bridge spans the unit interval, see figure 3.3.

-1 4

Figure 3.3. A trajectory of Brownian bridge

The Brownian bridge could also be defined by its covariance kernel k(s,t) =s At — st. To repre-
sent it as an integral over white noise we can choose (A, v) = ([0, 1]%, A) and my(u) = 1p,(u)
where By =[0,t] x [0, 1 —t]. You can think of B; as a rectangle in the unit square [0, 1]? with its
lower left vertex in (0, 0) and its upper right on the diagonal just as in figure 3.4. This ingenious
representation indeed does its job

/mt(u) ms(u)du :/ 1p,nB,(w)du=(sAt) (L —3s)A(1—1t))=k(s,1t).

Its left as an exercise to complete the construction of the kernel (or wait for example 3.11).

Bt t

Figure 3.4. Visualization of B

Example 3.10. (Fractional Brownian Motion) Wt(a) was defined for a € (0,2) and t € R by
its covariance kernel k(s,t) = %(Hs |*+[|t]|* —||s —t]|*) and ]EWt(a) =0.
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Let (4,v)=(R,\) and
a—1 a—1

mw)=(t w7 (- u)?

(the second term has to added for staying in L?). This way, we receive the fractional Brownian
motion W(®) as an integral over white noise. For checking this, we recall that the cumbersome
definition of k can be replaced by

2
E(W - W) = s —tfe.
But then we understand that our definition of m; is usable up to a constant factor ¢, depending
on the choice of a:
a—1

/]R(mt(u)fms(u))2du:/R(tfu)Ff(sfu)?du:ca\sft|a

where the last equality can be established by a linear transform.

So we again succeeded in finding the kernel H, but our current representation is not very
handily. f € H iff it can be written as

= [ (-0 - (-3 st

You get a nicer presentation of H if you recognize the above integrand to be the derivative of f
1 a—1
2

for some z € LA(R).

of fractional order == + , Le. setting 8 —1=

2

3.4 Kernel in Literature

In literature you will often find a different approach to the kernel of a Gaussian measure under
the name reproducing kernel Hilbert space. Nevertheless these concepts coincide as we will see
shortly.

Starting with a positive definite function k: 72 — R (you can think of this as the kernel of a
covariance function) the reproducing kernel Hilbert space H C {f: T — R} is constructed as fol-
lows:

(a) First all sections k(s,-) are added to H and the inner product is defined to be

(k(s,-), k(t,-)) =Fk(s,t).

(b) Then all linear combinations of elements of H are added.
(¢) And finally H is taken to be the completion.

How is this related to our notion of a kernel? Let’s assume (Xt),., to be a continuous process
(otherwise one has to go into topological details) and X = C(T). Then X’ equals M(T) con-
taining in particular the Dirac measures d; and h = I I’ §; € Hp is an element of our kernel.
Writing h explicitly, we get (here, k is the kernel of the covariance function of X)

h(s)=(0s,h) = (05, 11" 6;) = (1" 65, 1" 6¢) 5, =IE((05, X) (8¢, X)) = k(2, 5),
i.e. h=k(t,-). The inner product in Hp for such elements is

(160, 11'8) = (I' 80, 1" 8,) o, = E((85, X) (61, X)) = k(. 5).
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We have therefore shown that the reproducing kernel Hilbert space H for k is a subspace of our
kernel Hp.

The two spaces even coincide, which we won’t show here just indicating that equality comes
from the fact that arbitrary measures in X’ can be approximated by Dirac measures.

3.5 Linear Transformations

Once again, let X be a linear space and X a Gaussian random vector taking values in X' with
covariance function Kx. If ) is another linear space and L: X — ) a linear mapping, then ¥ =
L X is Gaussian, too, with covariance function Ky = L Kx L’. Denote with P the law of X and
with @ the law of Y. What do we know about the kernel of Q7

It is reasonable to hope, that Hg = L Hp. This is indeed true and the inner product of Hg is
defined by

= inf .
l9llg=_int _ Jolla,

Proof. For simplicity we assume that L is an injection. Using the usual notation, we have the
injection I such that II'=Kx and Hp= I(X]IJ).

Let’s use the factorization theorem and choose H = Xp to be the Hilbert space and J: H — Y
defined by J = L I the injective linear mapping. We can choose J this way because

JJ'=L(II')L'=LKxL'=Ky.
Applying the factorization theorem, we then get
Ho=J(H)=L(IXp)=LHp
which was to be shown. Furthermore (because we assumed L to be an injection), for y=Lz

Iyl g = |2 | r2p-

O

Example 3.11. (Brownian Bridge) In example 3.9 we defined the Brownian bridge to be
W, = W, —t Wy which is nothing but W = LW for the linear mapping L: C[0,1] — C|[0, 1] defined
by (Lz)(t)=x(t) —tz(1).

We can therefore use our theorem about linear transformations (but note that L is not an injec-
tion) to get the kernel Hg of the Brownian bridge from the Cameron-Martin kernel Hp of the
Brownian motion. g € Hg iff it can be written as g(t) = (L h)(¢) = h(t) —t h(1) for some h € Hp.
It is easy to see that g € Hp also, thus Ho C Hp. The necessary condition g(1) =0 is sufficient
as we can then choose h=g € Hp to get g=L h. The kernel of Brownian bridge is thus given as

Ho={he€Hp: h(1)=0}= {hEAC[O, 1]: h(0)=h(1)=0,h'€ L?0, 1]}
endowed with the norm

1
2
B30 = 1Al = / (W(u))2 du,

where || b/, < || #, follows from our theorem about linear transformations and equality is left
as an exercise.
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4 Cameron-Martin Theorem

This section and those to follow try to show the importance of the notion of a kernel for a Gaus-
sian measure.

4.1 Absolute Continuity of Shifted Measures

Let P be a measure defined on the linear space X and h € X. We define the shifted measure P,
via

P,(A)=P(A—h).
Under what circumstances is P, absolutely continuous with respect to P, i.e. P, < P? We will

discuss this question for Gaussian measures P. Thus if P = N(a, K) then P, = N(a + h, K)
which relates to a change of variable for a Gaussian measure.

Example 4.1. (One Dimensional Case) Let X =R and P=N(0,1), h € R. Then the den-
sity of P is

o= gizso( - 2)

and thus ¢(z) = p(z — h) is the density of Pj. It is easy to see that P, < P and

APy, h?

Therefore, in the one dimensional case we always have absolute continuity, which will change in
the general case. But keep an eye on the density of P, with respect to P in the case of exis-
tence.

Theorem 4.2. (Cameron-Martin) Let P be a centered Gaussian measure on the linear
space X. Then Pn < P for he€ X iff h € Hp where Hp is the kernel of P.

In the case h€ Hp

%(x) :exp<Z($) — ||h2Hp) =:q(x) (4.1)

where h=12z and I: Xp— X as in definition 3.2.
Equation 4.1 is called Cameron-Martin formula.

Proof. The proof can be done in two steps. First suppose h € Hp and show that equation 4.1
holds. This can be done by calculating the characteristic functions for P, and ¢(z) P(dz). This
is left as an exercise.

The second step is to show that if P, < P then h € Hp. This is quite difficult and may not be
too interesting and is thus left out here. O

Example 4.3. (Brownian Motion) This example exposes the special case of P being the law
of a Brownian motion, which is what Cameron and Martin studied. So X = C[0, 1] and X a
Brownian motion with law P and kernel Hp. We already know

Il = [ ) s
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We find z € Xp = L?0,1] such that h=1z via z=h’. It is not very surprising that

(z) = A " h(s)das),

which is evident in the case where x is differentiable, but otherwise left as an exercise. The
Cameron-Martin formula now yields

%(J;):exp(/o h’(s)dx(s)—%/(; (h’(s))2d5>.

4.2 Borell Inequality for Shifted Sets

An interesting application of the Cameron-Martin theorem is Borell’s inequality for shifted sets.
Starting with a symmetric set A (i.e. A = — A) with known probability P(A) we can ask how
much will the probability change if we consider A; = A + h instead.

Theorem 4.4. (Borell Inequality for Shifted Sets) Let P be a centered Gaussian measure
on the linear space X, Hp the kernel of P and h € Hp. For any symmetric set A,

P(A+h)>P(A) exp( —%) (4.2)

This theorem is very interesting because of its generality.

Proof. We have P(A + h) = P(— A — h) = P(A — h). The first equality comes from the cen-
teredness of P and the second from the symmetry of A. We thus conclude

P(A+h) = %(P(A+h)+P(A—h))

_ %/Aexp<z(x)—'hg%’f’>+exp<z(—x)—%> P(dz)

exp(z(z)) + exp(— z(z))
/A 3 P(dzx)

WV
o)
]
ke,
7N
\
[\V]
o

O

It is additionally true that P(A) > P(A + h) for convex symmetric sets A which will be shown
later on — see theorem 7.3.

5 Isoperimetric Inequalities

5.1 Introduction to Isoperimetric Inequalities

Isoperimetric problems are like that: of all sets with the same volume find sets with minimal sur-
face. It is very well known that in R"™ it’s the balls that minimize their surface.
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9y

So let’s start with R™ and the Lebesgue measure A. If B is a ball and A another “nice’
set (i.e. compact and smooth boundary) then the so called isoperimetric inequality can be
written as

AMA)=X(B) = |0A|>|0B],

where the left hand side denotes the surface measure. We don’t want to be more specific about
the special style of the surface measure. The generalization into infinite dimensions would not
be very transparent anyway.

Our goal is to rewrite this inequality in more general ways. So, how can we get rid of the surface
measure? Think about what the surface measure actually measures. If we enlarge the set A just
a “little bit“, then the measure of this enlargement is approximately proportional to the surface
measure. Define A" = A + B, for any set A. B, denotes the closed ball of radius r and A + B, is
often referred to as the Minkowski sum. Then

A(A™\A) > M(B"\B)

is a replacement for |0A| > |0B|. As A(A) = A(B) we can rewrite it to get the equivalent
inequality

AMA)=AB) = A7) =AB).

Although we had small values of 7 in mind when constructing this replacement, this inequality
turns out to be true for all > 0, and some important insights even arise from considering large
values for r. In this formulation the isoperimetric inequality is applicable to all measurable sets
A and not just to “nice” ones.

In a next step, we further want to get rid of the ball B in our inequality, too, to get a represen-
tation of this inequality just in terms of the measure. We know that A(B,) = ¢, r™ for constants
¢n. If B is a ball of radius p, then B" is a ball of radius p+r and we get

l n
A ZAB) = e (o4 )= | (2AL)
which leads to the inequality
TREVRTEE I
Cn Cr
The function @(v) = %/v/c, involved in this representation is called isoperimetric function.

Given a volume it returns the radius of a ball with just this volume. Try to interpret the
inequality in this way.

From R™ to the sphere $™. We want to extend our results to other measures, specifically
the surface measure o, on the sphere $” which is characterized by o-finiteness and invariance
under rotations and shifts. The sphere is of special interest in this context, because you can get
the Gaussian isoperimetric inequality in some sense as the limit of the spherical isoperimetric
inequality, see [Ledoux, 1996] for details.

Using the natural (geodesic) metric on the sphere we define A" in the same way as before, i.e.
A"= A+ U,. Our isoperimetric inequality then writes as

on(A)=0,(B) = 0,(A")=0,.(B")

with the unknown optimal (in the sense of minimizing their surface) sets B.
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It turns out that these sets B with minimal surface are again balls (w.r.t. the natural metric),
which can also be interpreted as intersections of half-spaces in R™*! with the sphere 8" as
shown in figure 5.1.

Figure 5.1. A ball on the sphere $!

5.2 Gaussian Isoperimetric Inequality

Now we go back to our Gaussian measures and start with a standard normal random vector
X =(X1,....X,,) with law P=Px =N(0, E,,) in R" endowed with the natural metric. We again
ask for the solution of the isoperimetric inequality

P(A)=P(B) = P(A")>P(B")

where again A" = A + B,. The solutions are no more ordinary balls but half-spaces, which can
be considered as very large balls, see figure 5.2.

r— o0

Figure 5.2. Half-spaces as large balls

Just as we did in the case of the Lebesgue measure, we want to rewrite this inequality in such a
way that the half-spaces disappear. If B is a half-space, say B = {z € R™ (f, z) < p} for some
f €R", then

P(B)~P(X € B)=P((£.X) <) =0 17 ),

where @ is the distribution function of a standard normal random variable. The enlargement of
B is again a half-space B"={z ¢ R™: (f,z) < p+ || f|| 7} (check this as an exercise) and

P(BT>=1P<<f,X><p+||f||r)=@(%)=@(¢1<P<B))+r).

As in the case of the Lebesgue measure, we then obtain (for P(A") > P(B")) the analytical ver-
sion of the isoperimetric inequality

-H(P(A7) 2 2~ H(P(A) +r.

Remark 5.1. It is not crucial for this inequality, that P is standard normal. Sure, if P is not
standard normal then no more all half-spaces minimize their surface. But for establishing the
isoperimetric inequality in its analytical version we did only use the fact that for each set A
there exists a optimal set B which is a half-space such that P(A) = P(B).
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We now want to generalize this inequality, that does not depend on the dimension, to the
infinite dimensional case. How is A" defined then?

Theorem 5.2. (Gaussian Isoperimetric Inequality) Let P be a centered Gaussian mea-
sure on a linear space X and & the unit ball of the kernel Hp, i.e. E1={h € Hp: ||h|gp <1} C
X. Define A"=A+r&;. Then for any measurable set A the following is true

DY P(AT) =2 Y P(A)) +.

P, is given by P,(A) =suppca P(B) where the supremum is taken over all measurable subsets

of A.

The formula states that there exists a measurable subset of A" such that the isoperimetric
inequality of the finite case almost holds. This may be necessary as A" does not need to be mea-
surable itself. The isoperimetric inequality 5.2 was obtained and published independently in
1974-1975 by C. Borell in Sweden and by V. Sudakov and B. Tsirelson in USSR. In the litera-
ture it is sometimes erroneously associated only with C. Borell’s name.

The unit ball of the kernel £; is sometimes referred to as ellipsoid of distortion of P. For an
explanation, think of P as a centered Gaussian measure on R2 Suppose that the covariance
operator K is not degenerated and has a decomposition K = I’ I. Then £ = I B is the linear
image of the unit ball B of & and thus indeed an ellipsoid.

5.3 Concentration Principle

Let X be a centered Gaussian random vector on the linear space X'. Our goal in this subsection
is to evaluate probabilities of the kind

P(f(X)>7) and P(f(X)<-7)

for r — co where f: X — R is a functional. We will be able to give bounds for such probabilities
for magically many functionals.

Definition 5.3. A functional f is said to be Hp-Lipschitzian with Lipschitz constant o, i.e.
f €Lip(o), iff for allz € X and h€ Hp

[fz+h) = f() <ol mp

Let m be the median of f(X), which means that P(f(X)>m)> % and P(f(X)<m)> %

Theorem 5.4. (Concentration Principle) If f € Lip(o) then for all 7 > 0 the following
statements are true

P(f(X)>m+7) < 1—@(5)
7)

The concentration principle tells us that the random variable f(X) is concentrated around its
median as strong as a normally distributed variable (which is super-exponential).

P(f(X)<m—7) < 1—<1>(
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Proof. Set A={z € X: f(x) < m} and use the isoperimetric inequality 5.2 as well as P(A) > %
to achieve

THR(AT) 2 2T H(P(A)) +r =T

which implies P,(A") > ®(r). Hence for § > 0 we find Bs C A" measurable so that P(Bs) >
®(r) — 6. Given y € A", there is h € Hp with ||h| gy, <7 and z € A such that

fy)=flz+h)< f(x)+or<m+or.
Then
P(f(X)<m+or)>2P(X € Bs)=P(B;s) = d(r) — 6.
As 4 can be chosen arbitrarily, we get

]P(f(X)>m—|—r)<1—‘I>(£),

and as the right-hand side is continuous our claim is proven. For the second inequality consider
— f instead of f. O

Example 5.5. (Gaussian Processes) Let X =C(T') with T compact metric and X a centered
Gaussian process on 1'. Consider the functional

f:X—>R, z—supz(t)
teT
and define o via

o2 =sup Var(Xy).
teT

We will show that f € Lip(c). This will give us e.g. the estimate

_ 2
]P(supXt>r><1—<I><T m><exp<—%), (5.1)
teT o 20

where m is the median of sup;c7X;. This will be continued in example 8.5.

First,

|f(z+R) — f(z) = |sup (z(t) + h(t)) —sup z(¢)| <sup |h(t)],

teT teT teT

and since h € Hp, we have z € Xf such that (recall that X’'= M(T))
h(t) = (¢, h) = (64, L 2) = (I' 64, Z)X{D
The Cauchy-Schwarz inequality therefore yields
RO 6ellaep 2l ap = 117 0el| e ([l

and

117 6|3 = E(6, X)? = X2 = Var X, < 0
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implies that f € Lip(o).

We are now equipped with a tool for estimating large deviations of sup-like functions.

6 Large Deviations

6.1 Introduction

The theory of large deviations exists in a more general context than the Gaussian one. However,
we will exercise this theory quite restricted here.

Let & be a topological space, not necessary linear, and Y,, € A a sequence of random elements
that converges in probability to a point a € X, i.e.

P
Y, —a.

A measurable set A C X that is separated from a is called a large deviation. Since A is sepa-
rated from a we clearly have

P(Y,€A) —0.

In the sequel we will be interested in the precise speed of this convergence.

Example 6.1. Let X =R, X, i.i.d. random variables and Y, :%2?21 X;. Then
Y, a=EX
and typical large deviation probabilities are given by
P(Y,>a+p) or P(Y,<a-—p)

which are bounded exponentially if X; have finite exponential moments.

Our goal is to describe the convergence of P(Y,, € A) in a way like
P(Y,cA)=exp(—v,I(A)) (6.1)

where v, — oo is the rate, I: X — [0, 0o] the deviation function and I(A)=infpc 4 I(h). Note that
the rate is to be the same for all sets A. I(h) can be seen as kind of a distance between h and a,
but it lacks properties like the triangle inequality. 6.1 then states an exponential decrease.

We won’t require 6.1 for all large deviations A. If the sequence Y, fulfils

limsup logP(ViA) < —1I(A) for all closed A
n— 00 n
and liminf logP(UiA) > —1I(A) for all open A,

we say that the strong large deviation principle, abbreviated as LDP, is valid for Y,. If we
replace closed by compact in our conditions, we get the notion of the weak large deviation prin-
ciple. Literature sometimes refers to the strong principle as the narrow one, and the weak prin-
ciple is known as the vague one.
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If Y,, obeys the LDP, then for any measurable set A

log P(Yn € A)

—I(z‘i)gliminf glimsupwg—l(ﬁ).
n— o0 VUn n— 00 VUn
In particular for regular sets, meaning that I(A)=I(4),
lim 28POREA) gy

n—oo Un

which is exactly what we had in mind when writing down 6.1.

6.2 Gaussian Large Deviations

Let X ~ N(0, K) be a Gaussian centered random vector on a linear space X and define Y,, =
%X . Obviously Y,, — 0 in probability. Our goal will be to show that LDP is valid for Y,, and
to determine the appropriate rate and deviation function.

Since

P(Y, € A) :]P(%XEA> —P(XenA)=P(nA),

we have a representation of the large deviation probabilities where the sets n A are changing
instead of the measures Py,. Figure 6.1 shows how these changing sets can look like. For the
sake of generality and because it does not make a difference, we will examine P(r A) for r € R
and T — oo.

@

X

Figure 6.1. Changing sets r A

Theorem 6.2. (Gaussian Large Deviation) Let P be a centered Gaussian measure on X.
Then

limsup l(ygfr’# < —I(A) for all closed A
and liminflOgI:# > —1I(A) for all open A,
T—00

where I(A) =infyc 4 I(h) and

1
I(h)= 5 IRl for he Hp
oo otherwise.

In other words, the sequence Y,, = %Xn obeys the LDP with rate n? and deviation function I.
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Proof. Set H be the kernel of X. Let A be closed and set p=infpcang ||h|g. Then I(A)= %2,
and the case p< 0 is trivial. So assume p >0 and take any g € (0, p). The ball

B={heH:[|hl|la<p}

in H of radius p has no intersection with A, and one can show that B is compact. We can
therefore separate A and B with open sets. In particular, we find an open neighborhood V of 0
such that

(B+V)NA=0
and thus for r >0

(rB+rV)NrA=0.

‘We use this for

P(rA) < P((rB+rV)°)
< 1- <I>( “YP(rV))+ rﬁ) isop. inequality 5.2
< 1—-®(rp) for r big enough, because P(rV)—1
< exp( r2/52
~ 2 k)

which implies

for r big enough. Since p < p was arbitrary we conclude

2
limsupwg - %z —I(A).

T™— 00

Now let A be open and h € AN H. If we don’t find such an h, then I(A)= oo and the assertion
is trivial. Since A is open we can choose a neighborhood V of 0 such that V +h C A and V sym-
metric (if V' is not symmetric we can migrate to VN —V).
P(rA) > P(r(V+h))=P(rV+rh)
2
> P(rV) exp( rn ||H> Borell shift inequality 4.2
2

2
> %exp( ——3 |H> for r big enough since P(rV) —1

and therefore

1
log P(r A) __ os(3) |l
r2 = r2 2

for r big enough. We thus achieved

2

T—00 T 2

for any he ANH. O
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Example 6.3. (Brownian Bridge) This is somewhat a toy example but it may help to see
how things work. Let X; be a Brownian bridge as defined in example 3.9, i.e. T=[0,1] and X =
C(T). We want to estimate

P((suplxil>7 )
teT

for big » which has some importance in statistics. Using the closed set

A= {xeX: sup |z(t)] 21}
teT

we can write this probability as

]P(sup | Xt 27‘) =P(r A).
teT
It can be shown that A is regular in the sense that I(A)=1I(A) and thus

lim log P(r A)

A r()=—3 it k]

T— 00 T

‘We now claim that

and therefore I(A) =2, which provides the asymptotic

]P(sup | X¢| > 7‘) ~exp( —27%).
teT

To show this, we recall how |||} was defined. We have to determine the infimum value of
1
Inl= [ ey ar
0

where h is an absolutely continuous function over [0, 1] such that A(0) = k(1) = 0 and addition-
ally sup;e(o,1) |h(t)] > 1. We claimed that this infimum equals 4 and this value is actually
attained by the “hat” function g shown in figure 6.2

2z for IE[O,%}
,1

g9(z) = .
2—2z for :::6(5 ]
because ¢'(z)%?=4.
A
LA
f >
1
— 1
2
—1 4+
Figure 6.2. Hat function g
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It therefore remains to show ||h||% > 4 for any allowed h. Choose s € [0, 1] such that |h(s)| > 1.
Then due to the Hoelder inequality,

1<) =| [ al<vs /[ wera

/ R'(t)2dt > !
0

s .

and therefore

With the same argument

! 1(+)\2 1
>
/s h(t) dt/l Py

which yields our claim

|hllF==+ - >4

1,1 1
s 1—s s(1—s)

So you have to be ready to solve difficult optimization problems when considering large devia-
tion problems.

Example 6.4. (Gaussian Processes) Here we will just state results for general Gaussian pro-
cesses. If X is an arbitrary centered Gaussian process, we are interested in the probability

]P(sup e ZT) =P(r A),
teT
where A is defined just as in example 6.3. From example 5.5 we know that for
o2 =sup Var(X)
teT
we have

2
r
P{sup Xi2>7r <exp( ——)
(teT - ) h 207
which is just inequality 5.1. It is therefore not too striking that

>
lim log]P(suptzeTXt >T) _ 1 2’
—00 T 20

but this is indeed just what we get when looking at the supremum over the absolute values

>
lim log P(supier | Xe|27) _ lim logP(rd4) 1 .
T— 00 r2 T— 00 72 202

We can use this inequality to reproduce our result from example 6.3. If X is a Brownian bridge,
then Var X; =t — ¢2 which is obtained from the covariance kernel of X given in example 3.9.
Thus

o? =sup Var(X,) =sup (t —?) =t — 7| lzl
teT teT t=5 4
which yields again I(A) = ﬁ =2.
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Exercise 6.1. Let (X, ] - ||) be a Banach space and X ~ N(0, K) a centered Gaussian random vector taking
values in X. Show that
>
b PUX|EY 1

r—co T2 2[K[

7 Convexity and Other Inequalities

7.1 Concavity of Measures
Let V be a linear space. A function ¢:V — R is called concave if
plaz+(1-a)y)Zap()+(1-a)e(y)

for all z,y €V and all a €0,1]. We now want to introduce the notion of concavity for measures
u. Unfortunately, the first try via

u(a A+ (1—a)B)>ap(A) + (1 - a) u(B)

is of no use because there are no interesting measures having this property. Instead we allow
different notions of concavity depending on some function @

@A+ (1—a)B) > Q(a, u(A), u(B))

again for all measurable A, B and all a € [0, 1]. Two concrete types of concavity are due to
Borell and Ehrhard.

Example 7.1. (Borell concavity) Concavity due to Borell is given by the condition
log (@ A+ (1—a)B)>alog u(4) + (1 - a)log u(B), (7.1)
and is therefore also called log-concavity. Equivalently,
plaA+(1—a)B) > p(A)* w(B)' =
It turns out that any Gaussian measure P is log-concave, but 7.1 is never sharp.
Example 7.2. (Ehrhard concavity) For the particular case of Gaussian measures
o' p(aA+(1-a)B)Z2a® ' u(A) +(1—a) @' u(B)

defines concavity due to Ehrhard.

In contrast to log-concavity, this inequality is sharp e.g. for parallel half-spaces.

Theorem 7.3. (Anderson Inequality) Let P be a centered Gaussian measure on X and A C
X a measurable symmetric convez set. Then for any he X

P(A)>P(A+h).
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Proof. Since A is symmetric

A—h=—A—h=—(A+h),

and we can apply log-concavity 7.1 to the sets A’=A+h and B'=A — h to get

/ !
log P(A ;B ) > %logP(A') —l—%logP(B') =log P(A")

as P(A’)= P(B’) due to the symmetry of P. Because A is convex

A'+B’" (A+h)+(A—h) A+A
2 2 o2

A,
which implies
P(A)> P(A")=P(A+h). O

Example 7.4. (Gaussian Processes) Let X be a centered Gaussian process on T'. Since the
set

A={zcC(T): |z(t)|<e(t)}
with e € C(T) and € > 0 is symmetric convex, we can apply the Anderson inequality 7.3 to get
P(|X;—h(t) <e(t) forallteT) < P(|X¢<e(t)foral¢teT).

For € chosen to be constant this means that the event that the process X is in a tube of width &
around a function h, can be replaced by the much simpler event that X is bounded by e.

7.2 Correlation Conjecture
If X, and X5 are independent Gaussian vectors on X, then
P(X;€A;,Xo€ A2)=P(X;€ 4)) P(X2€ Ay).
But often we have to deal with dependent vectors. Experience says that still
P(X1€A;1,X2€A3) 2P(X1€ A1) P(X2€ A) (7.2)
might be true for reasonable A;, As (though it is not true for all measurable sets). Anyhow 7.2

is yet not proved and is known as the correlation conjecture. In particular, it is conjectured that
7.2 is true e.g. for X; centered Gaussian and A; symmetric convex (which is similar to a ball).

There is another form of the correlation conjecture. Let X be Gaussian and A, B symmetric
convex sets. Then it is believed that

P(X € ANB) >P(X € A)P(X € B) (7.3)

which looks like some “independence of X from itself”. You can see the relation if you set X =
(X1,X2) on X x X and define the symmetric convex sets

A={(z1,z2) e X x X:z1€ A}, B={(x1,22) €X X X:22€ B}
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Conjecture 7.3 is proved for some special cases.
e It is known to be true for Gaussian measures on X =R?,

e or if one of the sets A, B is a symmetric strip, i.e.

{zeX:—a<(f,z)<a}

for some f € X’ and a €R.

e Using the last fact step by step e.g. for B=8B;N Bs
P(XeANB) ZzP(X e ANB)P(X €Ba) 2P(X e A)P(X € B1) P(X € Ba),

you get for a finite intersection B of strips Bj, i.e. B = ﬂ?:l Bj, the following variant of
conjecture 7.3

P(X e ANB)>P(X € A) [[ P(X €8y)
j=1
which can be extended to countable intersections as well. This is called Sidak inequality.

Although the variant of the correlation conjecture 7.3 is not yet proved there is a weaker but
proved version that suffices for some applications.

Theorem 7.5. (Weak Correlation Inequality) For any & > 0 there exists a constant K. >
0 such that for any Gaussian vector X and A, B symmetric convex

P(XeAmB);lP(Xe(l—»;)A)]P(XG5 )

Example 7.6. Lets give an application of the weak correlation inequality to small deviation
theory. If X is a Gaussian vector on (&X', || - ||) which is composed as X = X; + X3 where X; and
Xy are possibly dependent Gaussian vectors. If roughly speaking X; is a nice process and X3 a
small one, then we can estimate

P(lX[[<r) = P(|X1+Xaf <7)

P(|X1||<(1—¢e)r, || Xe|]|<er) triangle inequality

AR\,

P([ X1 <(1—-¢)?r) 1P(||X2|| < ;—T> weak correlation inequality

where the first factor is the one of asymptotic relevance.

7.3 Shift-isoperimetric Inequalities and S-conjecture
We already considered isoperimetric inequalities that arise when we consider an event A and
swap to a neighborhood A™ = A + B,. For Gaussian measures P we obtained the isoperimetric

inequality 5.2

Y P(AN) = d (P(A)) +.

Now instead of enlargements A” we will be interested in shifts A + h and dilations r A.
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For h € H in the kernel of P we have the shift-isoperimetric inequality (which is due to J.
Kuelbs and Wenbo Li)

oY (P(A) —|hlla <@ Y(P(A+R) <2 H(P(A)) +blla
where equality holds for half-spaces.
Switching to dilations r A for r > 0 we define
Gry=2(r)—@(—r)=29(r)—1=P(|X|<r) for X~N(0,1)
which thus can be interpreted as the Gaussian measure of a strip centered in 0. Let X be a cen-

tered Gaussian measure and A convex symmetric. The “S-conjecture”, stated by Kwapien and
Sawa, and proved later by Latala and Oleszkiewitz claims that for p such that G(p) = P(A)

G(rp) forr<l1

P
P G(rp) forr>1.

VoA

(r4)
(r4)
In other words — the measure of P(r A) decreases faster than P(r.S) for » <1 where S is a strip

of the same measure as A. If r > 1 then the measure P(r A) decreases (when r|0) faster then
P(rS).

Unfortunately, this conjecture is not too useful as the shrink of P(r A) for r < 1 is bounded
exponentially in most cases whereas the “conjecture” just provides the almost linear bound

G(rp).

8 Metric Entropy and Sample Paths

8.1 General Metric Entropy

Let (T, p) be a metric space. We define the following covering/packing numbers

N(e) minimal number of sets of diameter < e needed to cover T
N'(g)  minimal number of balls of diameter <& needed to cover T

M(e) maximal number of points with pairwise distance >e.

Example 8.1. If p is the discrete metric on 7', i.e. every two points have distance 1, then

ACRR
vo = {223
we) = { i it
From the definition it follows that
N(e) < M(e) < N'(e) <N(%>. (8.1)
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N(e) < N'(g) is trivially true, because a covering with balls is always a covering with arbitrary
sets, too. A set of diameter ¢ is always contained in the ball of diameter 2 £ around any of its
points and thus N'(g) <N (3).

Definition 8.2. (Metric Entropy) The function
H(e) =log N(e)
is called metric entropy of (T, p) and

C(e)=log M(e)

metric capacityof (T, p) .

The interesting property of the metric entropy H is its behavior for ¢ — 0. A typical graph is
shown in figure 8.1.

»
>

Figure 8.1. Typical graph of a metric entropy

8.2 Metric Entropy of Gaussian Processes

Every centered Gaussian process X on T generates a semi-metric p (also known as the Dudley
metric) on T via

p(s, )2 =E(X, — X,)?= Var(X; — X.).

The metric entropy H(X, &) on (T, p) is called the metric entropy of X. The capacity C(X, ¢)
is defined analogously. For applications it is important that the metric entropy of a process X is
in some cases easy to evaluate.

The integral
\IJ(X,u):/ VX 2) de
0

is called the Dudley integral of X. It’s an increasing function that is either everywhere finite or
everywhere infinite. If you recall that the metric entropy H(e) is defined as log N (g) you can see
that

VH = V1og N is the inverse of exp(NQ)

which makes the Dudley integral perhaps a bit less arbitrarily chosen.

Theorem 8.3. (Continuity Condition) If the Dudley integral ¥(X, u) < co is finite for a
centered Gaussian process X, then X is continuous (in the sense that a continuous version of
X exists).
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It is therefore sufficient for a process X to be continuous that

C

H(X,e) < 5

for some constant ¢ and § >0. Or equivalently,
c
N(X,e) <eXP(m)-

Note that these conditions are optimal in the sense that counter-examples exist for § =0.

Theorem 8.3 makes it easy to see that a Brownian motion W is continuous. Remember that
N(W ,e) is the metric entropy on T = [0, 1] equipped with the metric

pls.t) = VE (X —Xo)2 =/ —al.

An e-ball w.r.t. the metric p is just an 2-ball w.r.t. the standard metric. Therefore we need
approximately 2 balls w.r.t. p to cover the unit interval [0, 1], i.e. for ¢ small enough

N(W,e) <

oo

and the Dudley integral is trivially finite.

The continuity condition ¥ (X, u) < oo is not necessary in general, but a (very deep) result of
Fernique states that it is necessary for continuity and boundedness of centered Gaussian sta-
tionary processes, see also [Ledoux, 1996]. For centered stationary processes the distribution of
X — X, only depends on |t — s|. The Dudley metric p is therefore induced by a Fréchet metric p

p(s,t) = VE (X, — X,)* =p(|t — s]).

Theorem 8.4. (Dudley Theorem) Let X be a centered Gaussian process and

o2=sup E X?.
teT

Then

Bsup Xt<4\/§\11(%).

Example 8.5. (Estimate for Supremum) We can use Dudley’s theorem to get an estimate
for the supremum of a centered Gaussian process X. From example 5.5 we know that

]P(supXt>r><1—CD<r_m)
teT o

where m is the median of sup;c7 X;. But what is m in concrete situations? From the Jensen
inequality we know that

m < Esup X,
teT

which implies using Dudley’s theorem that

IP(supXt>r><1—cb(r_m)<1_cp(ﬂ>_

teT
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Let’s look at some application of the capacity C(X, €) of a centered Gaussian process X. The
Sudakov minoration

Esup X >c+/C(X,e)e foralle>0
teT

is the counterpart to Dudley’s theorem. Note that

Esup X;=00 = sup Xy=00 a.s.
teT teT

due to the concentration principle 5.4 (this implication is in general not true).

Just to mention two other results,

X path-wise bounded — C(X,¢) and (8.2)

2

X continuous — C(X,e)= ( )

8.3 Metric Entropy of an Operator

Let X be a centered Gaussian on (&, || -||). We are now interested in properties of | X ||. Using

={fex’|fll<1}
and
||l = sup (f,z)
feB’
for x € X, we can rewrite | X || as

X1 = Sup (f,X)=sup Y(f)
feB’

where Y (f)=(f, X) is a Gaussian process on B’.

Therefore, we are interested in the metric entropy H(Y, £) of the new process Y. This was
defined as the metric entropy of (B’ p) where

p(f,9)2=E((f,X)— (9, X))’=E(f — 9, X)?=I'(f — 9)| %

The last equality gives rise to the definition of the metric entropy for an operator.

Let L: X — Y be an operator between two normed spaces X and ). We define the metric

entropy H(L, €) of the operator L to be the metric entropy H(B, ) of the metric space
B={Lz:zecX,|z||<1}C ).

For compact operators L this is well defined.

With this definition it is easy to see that the metric entropy H(Y, €) is just the metric entropy
H(I’, €) of the operator I’ When studying properties of || X || one is thus interested in the
metric entropy H(I’, ¢).

It is not too surprising that the metric entropy H(I, €) is of interest as well. This entropy is the
metric entropy of (B, || - ||x) where By is the compact unit ball of the kernel Hp

By={heHp: |h|g,<1}C X.
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Whenever we have an operator L: X — Y and its adjoint operator L’: Y’ — X’ there seems to be
a relation between their metric entropy. It is conjectured that

N(L,e)~N(L',e) fore—0,

i.e. the metric entropys of L and L’ are of the same order.

A result due to J. Kuelbs and W. Li shows that small ball probabilities of a Gaussian measure
P are connected to the metric entropy H(I,¢).

Theorem 8.6. (J. Kuelbs, W. Li) Let X be a centered Gaussian on (X,| -|). For a €0,
2)

2a
H(I,e)re™* <= logP(|X|<r)~—71 2-°.

Note that for o > 2 the process X would be unbounded (compare equation 8.5). E.g. for the
Wiener process a=1.

Proof. Let’s proof “ = ”. So we assume that there are cj, co > 0 such that for £ > 0 small
enough

cre”*<log N(I,e) <cge™“.
We will now try to show upper and lower bounds for logIP(|| X || < r) for r small enough.

Upper Bound. Using M(I,e) > N(I,¢) from 8.1 we get
logN(I,e)zc1e™® = logM(l,e)>c1e™®
and the left side is assumed. Recall that H(Z, ) is the metric entropy of the space (&1, || -
|lx) with & being the closed unit ball of the kernel H. The definition of M, = M(I, €)
gives us points
z1,...,xm, €& such that each |z — x| >e.

Thus for A >0

Ax1, ..., Axp, €€y such that each |[Azp— Azj|| > Ae.

Let B denote the unit ball of X'. Therefore the balls

AE

AIJ—F?B, j:].,...,ME

are disjoint which implies
ME
3 P(ij+A2—EB> <1.
j=1

Applying Borell’s shift inequality 4.4, we get
M,
~ pf Ae N |z | 7
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and since |z;| g <1

Setting r = ’\2—5 this rewrites to

1 272
P(rB)< A exp<?).

Using our assumption we have for any representation e=4d7% and §,u >0

2
log P(rB) < 26%—01 7= 2r2_2“ —c 6 arTay,

It is straightforward to choose u so that 2 —2u=—au, i.e. u= L, yielding
2—a

2a

logP(rBysx —Kr *=

for K =c¢; 6~ —2§~2. Choosing 6 > 0 appropriately such that K > 0 yields the asserted
upper bound.

Lower Bound. Let € >0 and set N, = N'(I,e). We can cover the unit ball £ of the kernel
with N¢ balls of radius €. Again, B denotes the unit ball of X. For A >0

NE

& c |J (@+¢B)
j=1
Ns

— A& C (J (\zj+AeB)

j=1
Ns

— A&+AreB C | (\zj+2XeB).
j=1

Using the isoperimetric inequality 5.2 and the Anderson inequality 7.3 yields
®(A+ 2 YP(AeB)))<P(A&+Ae B)< N.P(2XeB)
for any € > 0. Replacing ¢ by this implies that for all € >0
®(A+®@ (P(¢B))) <N./»P(2¢B).

‘We want to choose A >0 so that the left side is > % This is e.g. established for

2 |log P(e B)|
since
®(A+® Y(P(B))) > %
<~ & Y(PEB)) = —
= o(—-)) < P( B)
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and

AQ
So far we reached

< N./»P(2¢B)

N[ —

for all £ >0. Thus

—log2<log N,/ +log P(2¢ B),
and using N =N'(I,e) < N(I, %) from 8.1 we get for c=2%cy and € small enough
c(e/N)"*=log N;jp > —log2+ |log P(2¢ B)
since we assumed log N(I,¢) < coe~*. Replacing & by %, this yields
ce™® <2 ‘logP(%B)‘ )a/QZ —log2+ |log P(e B)|.

We now set ¢(e) = |log P(e B)| to get

w| R

6] <10g2+5€_a<p(§)
for a new constant ¢ > 0.
‘We have to show that there is some constant K >0 such that for € small enough

2a

logP(eB)>—Ke %=

or, equivalently, that

2a 2a
e?= p(e)=e%" |log P(¢ B)| < K.
We already have

2a 2a 2

g2 p(e)<e?~ log2+ée>-= @(%)

w2

and it is left as an exercise to complete the argument.

O

Theorem 8.7. (Talagrand’s Lower Bound) Let X be a centered Gaussian process on T. If
N(X,e)<ce P

for some constant ¢ and 3 >0 then there is a constant K >0 such that

P( sup |X;— X,/ <e)>exp(—Ke P).
s,teT

A slightly more general result is proved in [Ledoux, 1996] using Sidak’s inequality (correlation
inequality for strips).
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9 Expansions

In this section we will deal with two closely related problems.

1. Problem. Given a linear space X and a Gaussian measure P =N (0, K) on X. Construct

o0
X:Z gjilij
j=1

where &; are independent Gaussian random variables and x; € X such that the sum con-
verges and P is the law of X.

2. Problem. Given a linear space X and a Gaussian vector X on X. Construct a represen-
tation

X=>¢&uz; (9.1)
j=1

of X where &; are Gaussian random variables and z; € X'. 9.1 is called ezpansion of X.

Note that the second problem is a bit harder than the first one, because we have to construct a
sum that reproduces X almost surely. These problems are especially important for modelling a
Gaussian vector X.

9.1 General Series of Independent Vectors

Let (X, | -]|) be a normed linear space and X; random vectors taking values in X'. Then

Sn:zn: X;

j=1

is a random vector on X, too. But what exactly does
o
S=>"X;

j=1

mean? What type of convergence can we expect? In general there are three important basic
types of convergence.

(a) Convergence in distribution, i.e. weak convergence of the laws of S,,.

(b) Convergence in probability, meaning that for some S and all £ >0
lim P(||S,— S| >e¢)=0.

(c) Almost sure convergence.

Nevertheless these three types of convergence agree in a special case.

Theorem 9.1. Let X; be symmetric independent random vectors in (X, || - ||) such that their
partial sums S, converge in distribution. Then this convergence is almost sure convergence.

The proof is not easy and thus omitted.

Now let’s turn towards the solution of our first problem. Unsurprisingly, the kernel of the Gaus-
sian measure P plays a key role again.
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Theorem 9.2. Let P = N (0, K) be a Gaussian measure on a linear space X and {h;: j € N}
an orthonormal basis of the kernel H. Then for £;~ N(0,1) i.i.d. the law of

x
X=Y"¢&h;
j=1

is P.

Proof. We have to check that the laws of the partial sums converge weakly to P. We do this
by looking at the characteristic functions. We show that for f € X’

Eexp(i Z 5]’ (fah])) _)/;( exp(i (f’w)) P(dw)

For fixed f both sides may be thought to arise from Gaussian random variables, and since their
expectations vanish we have to check only their variances. For the right side we get

| (.02 Pan) = |1 £,
and for the left one

Var (f,S,) = Var<z @(f,hj)):Z (f,hj)2=Z (f, I2;)?

Jj=1 Jj=1

= > I f.2)% — Il
i=1

which was to be shown. The second last term is a sum of Fourier coefficients w.r.t. the basis
{z}- O

Now we are ready to turn to the second problem. Given X, we have to construct an expansion

X:E fjl‘j.

Theorem 9.3. Let X be a centered Gaussian random vector on X and H be the kernel of the
law of X. Choose an orthonormal basis {z;: j € N} of Xp. Then {h;: j € N}, where h; =1 z;,
is an orthonormal basis of H.
o
Y=) zi(X)h;
=1

J

is well defined and X =Y almost surely.

Proof. z;(X) is well defined almost surely. We will to show X =Y a.s. or, equivalently,

Py_x = 6g Dirac measure in 0
Eexp(i(f, Y —X)) = 1 forall feX’

by checking characteristic functions. It is sufficient to show that almost surely (f,Y — X)=0, or
(f,X)=(f,Y), for all fe€ X’. By definition we have almost surely
Z(X) (f,hy) =) z(X) (' f,2).

1 j=1

(vK): lim (fai ZJ(X) h’J):

n— oo <
j=1 J
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On the other hand we have L?(X, P) convergence for n— oo of

ZZJ (' f,z;))— 1" f(-)

<.
[y

since X% is a Hilbert space with orthonormal basis {z;} and convergence in its metric means L?
convergence. Because I’ f(X)=(f,X), we get

(f,Y)= Z YU fr2)=1' f(X)=(f,X)
almost surely from theorem 9.1. O

Example 9.4. (Brownian Motion) To write down an expansion W for a Brownian motion,
all we have to do is to construct an orthonormal basis of the kernel. We achieve this by

e choosing an orthonormal basis {z;: j € N} of L?[0,1],

)= [ zis)ds

an orthonormal basis {h;: j € N} of the kernel.

e which generates via

e Now the expansion
(o]
W=>"¢&hy,
j=1

where &;~ N(0,1) are i.i.d., defines a Brownian motion.
This way, we will try to get some nice expansions.
(a) Choose the orthonormal basis
z0=1, zn(s):\/icosnﬂs for n>1.
of L?]0,1]. Then

sinnmt
ho(t)=t, hn(t)=V2 B

yielding the expansion

Wi=bt+v2Y & R0
— nw
In example 3.9 the Brownian bridge W was defined by W, =W, —t W1, and therefore

t
Wt \/_Z é.nSln’rLﬂ'

is an expansion that defines a Brownian bridge.

(b) Another orthonormal basis of L?[0,1] is

Zp(s)=+2sinn7s
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which implies

hn(t):ﬁl—cosnﬂt

nw

providing the expansion

N ¢
Wt=\/§z gnﬂ_
n=1

nw

(¢) The following expansion is known as Karhunen-Loéve expansion. Starting with

Zn<s>=ﬁcos<(n_§) m>,

) :\/isin((n— %)’/TS)

GHE

which are also orthogonal in L2[0,1]. The expansion

we get

Wt:\/ﬁi £nsin((n—E)WS)

GHE

is based on an eigenbasis for W in L?[0, 1] instead of a basis of C[0, 1]. You can find a
quick deduction of this eigenbasis e.g. in [Vanden-Eijnden, 2003, 4.4].

(d) For the Haar-Schauder expansion we will use the Haar basis of L2[0,1].

1 for SE[O,%)
U(s)=49 _1 forse (%, 1}

0  otherwise

defines the so called Haar function which is shown in figure 9.1.

1 4
p—
1
-1 4+

Figure 9.1. Haar function
The Haar basis of L?[0,1] is then given by

zo(8) =1, zj,k(s):2%\1i(2js—k) for j=0,1,... and k=0,...,29 —1,

see figure 9.2.
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200 210 211 220 221 222 223

—_
—_
—_

Figure 9.2. Haar basis

Note that we get a basis of L%(R) if we consider z; j for j, k € Z. Nevertheless, this pro-
vides the Schauder basis

ho(t)=t, hju(t)=2 2h(27t—k) for j=0,1,...and k=0,...,2/ —1

where h is a roof on [0, 1] defined by

t for te [0, %}
h()=S 1—¢ forte (%1}
0 otherwise.

The appendant expansion is

o 27-1

Wy=&t+ Z Z & hjx(t)

j=0 k=0

which again contains an expansion for the Brownian bridge, too.

Example 9.5. (Complex Brownian Motion) As another example we will take a short look
at the complex Brownian motion which arises as a Gaussian W on X = C([0, 1], C) whose real

and imaginary parts are independent real Brownian motions W and W®
Wo=w +iw?.

It is not surprising — and left as an exercise to show — that everything works as in the real case.
Instead of L?[0, 1] we now have to deal with complex valued square integrable functions and so
on. An orthonormal basis of L%([0, 1], C) is

Zn(s)=exp(2nmis) for neZ.

This way we get ho(t) =t and

exp(2nmit)—1
() = SRELED L o,

as an orthonormal basis of the kernel and the expansion

- exp(2nmit)—1
Wt_nzz_oo &n 2nmi '

It is maybe worth to mention that this expansion can be extended to the case of the complex
fractional Brownian motion W(®) which again is the sum

Wt(a) — Wt(a’l) + i Wt(a’z)

Armin Straub 45
math@arminstraub.de



Gaussian Random Functions Expansions

of two independent real fractional Brownian motions. Due to a result of K. Dzhaparidze and H.
van Zanten

o .
(@) exp(2wpit) —1
D D PR aaL

is an expansion. Here wy,, are real zeros of the Bessel functions J;_«o. In particular, for a =1 we
2
have

27 . .
Ji(z)= T sinz with zeros 7n for n€Z
2 z

which is just what we found in the case of the Brownian motion. o,, are constants which behave
like

Lncgn 2 for n— oo

for a constant c,.

9.2 Linear Operators and Gaussian Vectors

Given an operator
L:H— X for ‘H Hilbert and X" linear

we will try to construct a Gaussian vector X on X corresponding to the operator L.

Let {l;: j € N} be an orthonormal basis of H and &; i.i.d. standard normal random variables.
We try to define X using the formal expansion

(o)
X=Y" &Ll
j=1

and say that X was generated by L which surely depends on the basis chosen in H.

Theorem 9.6. The following is true.
(i) Convergence of the series used to define X happens either with probability 0 or 1.
(ii) Convergence does not depend on the basis {l;}.

(iii) In the case of convergence we have
K=LL

where K is the covariance operator of X. Consequently, the law P of X does not depend
on the choice of {l;}.

(iv) Furthermore, in the case of convergence the kernel H of P is given by

H=LH and By={heH: |h|<1}=L{leH: |I|<1}.

The third point of theorem 9.6 states that the linear operator L actually generates a Gaussian
distribution P.

This enables us to define a new norm for the operator L via

1Ll =VE[X[Z=<YE[X]%.
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Finally, we define the so called I-numbers /,,(L) which serve as a measure of approximability by
finite rank operators

In(L)

inf {||L — F||;: rank(F)<n}

n—1
X =3 g
j=1

2

¢

inf E tz; € X, & normal

It follows from the Anderson inequality 7.3 that the last infimum does not change if it is just
taken over independent random variables &;.

10 Strassen’s Law

10.1 Scalar Laws of Iterated Logarithm

The law of the iterated logarithm comes in two main versions:
e for sums of independent random vectors,
e for the Wiener process.
Let X; be i.i.d. standardized random vectors, i.e. EX;=0 and EX?=1. Define

5,=3" X;.

1

n
j=

Then the Hartman-Wintner law states that almost surely

. Sh
limsup————— =1
n—ooo V2mnloglogn
o Sn
liminf ——— = —1.

e VZnloglogn

The analogous result for a Wiener process W on [0, c0) due to Lévy reads

Wy

li —_— =1
ltrisolip v2tloglogt

W, (10.1)
liminf —— = -1

t—oo 4/2tloglogt

10.2 Functional Law

We will now extend the scalar law for the Wiener process to the so called functional law which
looks at whole trajectories (W)scjo,7)- Let W be a Brownian motion on [0, co). We define a
new, properly scaled, Brownian motion

W-
WS(T) _ Ts
VT

for T > 0. Eventually, T will tend to infinity. In the sequel we look at W) as a Brownian
motion on [0,1]. Then W) contains all information of (Ws)sejo,1)-
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Similarly to the scalar law, we set

vy w Wrs

s \/2loglogT:\/2TloglogT'

The scalar law of the iterated logarithm states that

limsup YI(T) =1 and liminf YI(T) =—1.
T—o00 T—o0

‘We have to define the notion of convergence to a set.

Definition 10.1. Let z = (ﬂft)t;o be a sequence in a metric linear space X. x s said to con-
verge to the set A C X, written as

= A fort— oo,
iff A is the set of all limit points of x, i.e.

lim d(z¢, A) = 0 (there are no other limit points)
t—oo

(Va€ A) liminfd(zy,a)
t— o0

0 (all points are involved).

The functional law states that ¥ (7) converges to the unit ball of the kernel when 7' — co.

Theorem 10.2. (Strassen’s Functional Law of the Iterated Logarithm) Let Y(T) be
defined as above and H the kernel of the associated Brownian motion. For T — oo, a.s.

YD s & :={he H: ||h|g<1}cCC0,1].

More verbosely,

WTs
V2T loglogT | ¢p0,1)

— &  for T — oo.

The following corollary is an immediate but pretty nice consequence.

Corollary 10.3. Let F:C[0,1] = R be continuous. Then, a.s.

limsup f(Y(T)) = sup F(h)

T— oo heéy

Example 10.4. Take e.g. F(z)=1z(1) to get Lévy’s scalar law of the iterated logarithm.
Other interesting choices are

1
F(z)= sup z(t), inf z(t) or / |z(t)|Pdt
telo,1] t€[0,1] 0

yielding e.g.

Wi
limsupwzlimsup sup Yt(T): sup sup h(t)=1, (10.2)

T—oo V2T loglogT T—oco te[0,1] he&r te(0,1]
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since the supremum on the right is attained for h(s)=s.

Note that 10.2 is a remarkable extension of Lévy’s law 10.1 where W, was considered instead of
supte(o,7] Wi This demonstrates what was mentioned as “looking at whole trajectories” in the
introduction.

10.3 Proof of Strassen’s Law

Proof. Let v>1. We will decompose YT as
Yy _y @ Ly
depending on ~. Define Vs by stopping Y (7) at the time %, ie.

v =y®),
s

Y™ depends on W, for t € [0, %} only, and is therefore independent from Y (™) which depends

on Wy —Wr,, fort e [%, T} only since

1
S<—
\’Y

O _y M@ _ .
s s s )<;T)__){£T) sc€ [%,1}
¥

Set T,, = 4™ d is used to denote the metric induced by the sup-norm used in C[0, 1]. Then the
following is claimed to be true.

First Claim. For all v>1 and for all e >0

3 IP(d(Y(T"),Sl) >s) < 0.

n

Second Claim. When «|1, we find £1(7) — 0 such that

TE[Tn,Trn+1)

Z ]P( sup d(Y(T), Y(T"“)) > 61(7)> < 00.
Third Claim. Let h € H be in the kernel and |||z <1. Then for all € >0

([ o] <)o

Note that the Y(™) are dependent so we can’t use Borel-Cantelli directly.

Fourth Claim. For v— oo we find e2(7y) such that lim~_, €2(7) =0 and

(]

>a2(7)) < 0.
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These claims suffice to prove Strassen’s law since the first two claims say that (a) there are no
other limit points of YT) while the last two state that (b) all points of & are actually limit
points. We can see these implications like this:

(a) Using Borel-Cantelli, the first claim provides

limsup d(Y(T"), 81) =0 a.s.

n— oo

for all v > 0, while the second one yields

limsup  sup d(Y<T),Y<T"+1)><51(»y) a.s.
n—oo TE[TH,T,,,_+1]

Due to the triangular inequality, for every n € N

d(y(T), 51) < d(y(T), Y(Tn+1)> + d(Y(Tn+1)’ 51)
and therefore

limsup d(Y(T), 81> <ei(y) as.

T— o0

It remains to let |1 and use £1(7y) — 0.

(b) We have to show that all points of & are limit points, i.e. for all h € &;

liminf HY(T) — hH —0 as.

T— o0

It suffices to show this for h such that ||h||z <1 (using approximation and standard diag-
onal arguments). Let’s fix such an k. Combining the last two claims we get

S B([[r ™ — | <, 7] <2an) ) =

Since & >0 was arbitrary, we can in particular choose € =¢e5(y) yielding

v

+ HY(T") - hH <eg(v) +e<2e9(7).

Therefore

3 1P(HY<Tn> —hH <2ag(7)) — .

Remember that Y (7 only depends on W, — Wr,y for t € [%, T} and that T, = ~". So the
Y (™) are independent which allows us to apply Borel-Cantelli to get a.s.

liminf HYW th <2es(7)

n— oo

On the other hand, we get directly from the last claim that a.s.

limsup HY (Tn)

n—oo

<ea(7)
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Since

e N N e

combining these two yields

liminf HY(T") - hH <3e2(y) as.

n— oo

It remains to let v — oo which means e9(7y) — 0.

We will now prove the first and third claim. The second and fourth claims can be proved using
similar techniques as were used for the first one.

Proof of First Claim. The first claim states that for all v>0 and for all £ >0
3 IP(d(Y(T”),El) >e) < oo.

Remember that W(*) was a Brownian motion on [0, 1] for all T > 0. Thus for L, =

2loglogT,,
W (T») W
YT =___—— s distributed as is .
v2loglog T, VL,
Therefore

P(a(YT),&)>¢) ]P(d(%, 51> >£> —P(d(W,E/-) >e VL)

P(W ¢ EytteVin B) (B denotes the unit ball)

< 1-9(o ' (P(WeeVL,B))+vL,) (isop. ineq. 5.2)
< —<I>(1—|—\/L_n) for n big enough

2
< exp<_@>

< exp( _ %) exp( = vI7).

‘We can estimate

exp(—z)<cz™*

for all z >0 and a fixed constant ¢>0. Thus

P(d(Y™,61)>e) < exp<_ )

2
< _ _“
ol )
< cL;? (L,=2loglogT,
< logT no oglog T,,)
_ 2 _am
= nlo (log(n log 7)™ (Tn=7")
< c—1 for a new constant cj.
n (logn)?
This was to show since ) m < oo
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Proof of Third Claim. Let £ >0 and h € H such that ||k g <1. We have to show that
> P(|JyT—nl| <2)=co.

We use that Y (™) is distributed as %, see the proof of the first claim, to get

p( |y -] <¢) ]P(H%_n —hH <e>—1P(||W—h\/L_n|| <= VL)

P(WeevL,B+h+L,) (B again the unit ball)

2
> P(WeeyL,B) exp( — HhHTHLn) (Borell shift ineq. 4.4)
2
> %exp( - H}LHTHL") for n big enough
1 ~ln _
> 5 (logT,) (Lp=2loglogT,)
> en~IMlE  for some constant ¢ (T,=9™).

«

This estimate suffices since )" n™*=o00 for a < 1.

10.4 Extensions of Strassen’s Law

There are several possibilities to extend Strassen’s law 10.2. We will just mention some direc-
tions.

Other norms. The space C[0, 1] endowed with the sup-norm can be replaced with other
normed spaces, e.g. LP spaces. As long as the norm || - || is “reasonable” and a.s.

Wl < oo,

this norm can be used in Strassen’s law as well. Note that the weaker the norm, the
stronger the result will be, as we have more continuous functionals then.

Rate of convergence. From Strassen’s law we know that a.s.

lim d(Y(T),€1> —0.

T— o0
But how does this convergence take place? One is able to show that in fact a.s.

d(Y<T>,51) - °
(loglogT')®

for a constant c. Strassen’s law further says that for any h € &; a.s.

liminf HY<T> —hH —o0.

T— o0
For h such that ||h| z <1 one can show that a.s.

C

V1i-|hl%

liminf “Y(T) - hH loglogT =

T— o0
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for another constant c. Therefore the rate of convergence to inner points of & is

1
loglog T’

but this term explodes on the surface. Nevertheless the rate of convergence is generally
between (every value is actually attained)

1 1
Toslon T and ——
08108 (loglogT)3
depending on the smoothness of h (in the spirit of Holder).

Note that we are talking about large deviations here since roughly speaking

w
v2loglogT

Here, ~ means “is approximately”.

YD xh — ~h <= Wahy2loglogT — .

Multivariate Case. Instead of a Brownian motion W, one might want to consider a vector
w=(wo, W)

of independent Brownian motions. However, most things won’t change. You just have to
replace &1 by the unit ball of the kernel of W which is equipped with the norm

1
1Al = / 17(s) |n ds.

Multiparametric Case. Strassen’s law can also be extended to the case of a Brownian
sheet W on [0, 00)™ The scaled version W(T)

(T _ ™ _ Wrs  Wrsy, . Ts,
Ws - Wsl,,..,sn - Tn/2 - Tn/2

is again a Brownian sheet, and
T
v _ w (D

- 2loglog T

converges to the unit ball of the kernel of Brownian sheet.

Fractional Brownian Motion. If W () is a fractional Brownian motion, then

(@)
(T,e) _ WTs
Ws - Ta/2

defines a Brownian motion of fraction « as well, and

Ww(T»e)
v2loglogT

converges to the unit ball of the kernel of fractional Brownian motion with fraction a.
Unfortunately, there is no easy description of this kernel. Remember that we had to deal
with fractional derivatives.

vy =
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Conventions

(Q,2,P)
is always our underlying probability space. If we say that X is a random vector in a
linear space X we mean, that the mapping X:Q — X is 2-measurable.

ACB

is used to denote that A is a (not necessarily strict) subset of B. A strict subset is
written as A C B.

f=g
Roughly speaking f~ g if f and g are asymptotically of the same order, i.e.

f f

0 < liminf E < limsup E < 0.

From this it is easily seen that ~ is an equivalence relation.

f=o(g) and f=0(g)
These are the usual notations introduced by E. Landau:

f=olg) = limgzo

and

f=0(g9) <= limsup ‘I‘ < o0.
g
(y,7)
is often used to denote the appropriate “duality product”, meaning that

(y,z):=y(x),

where e.g. z€ X and y € X' is a continuous linear functional.

This notation is used to emphasize, that the term may be interpreted both as a function
in z and a function in y. In the above example, we might read = as a functional over X".

In a Hilbert space this notation is used for the inner product as well.
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